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Two methods of global minimization, the diffusion equation method and the distance scaling method, are
applied to predict the crystal structures of the hexasulfur and benzene molecules. No knowledge about the
systems other than the geometry of the molecules and the pairwise potentials is assumed; i.e., no assumptions
are made about the space groups, cell dimensions, or number of molecules in the unit cell. Both methods are
based on smoothing transformations of the original potential energy surface, which remove all insignificant
local minima; the surviving minima are traced back to the original potential energy surface during the so-
called reversing procedure, in which the transformations are gradually removed. The crystal structures, known
from experiment, were predicted correctly. To verify the power of the methods, the problem of global
minimization of the potential energy of crystals of both molecules was intentionally increased considerably
in complexity: viz., the numbers of molecules in the unit cell were doubled (from three to six in the case of
hexasulfur and from four to eight in the case of benzene), and the search for the global minimum was repeated;
the method again located the global minimum for each molecule. Additionally, local minimizations starting
from the lowest-energy structures were carried out with a pressure term included, leading to the observed
high-pressure structure of benzene.

1. Introduction distributed multipole analysis including electrostatic anisotropy,
should perhaps be used for the best reproduction of experimental
results?® However, in many computer simulations involving a
large number of energy and gradient calculations, it is necessary
to use a simpler but less expensive potential function, from the
computational point of view. Reasonably good results in the
description of crystal structures may also be obtained by
expressing the nonbonded part of the potential in the Lennard-
Jones 6-12 or Buckingham 6-exp forms, with electrostatic
the potential energy. Despite many effdHss the latter interactions represented as Coulombic interactions between point

problem remains unresolved, or only partially resolved, The chargesP#:# also, a simpler 6-exp potential without any
main obstacles in locating the most stable (global-minimum) €l€ctrostatic term may be used for a good description of lattice
crystal structure are the existence of numerous local minima of €nergies’ 2 However, by using an improper potential, it can
the potential energy of a structure and the high dimensionality P& €xpected that one might obtain artificial, nonobservable
of the potential energy surface (when no knowledge of Space_structures as minima of such a potential, that differences in
group symmetry is assumed). Other serious obstacles include€nergy between different structures may be very stahd

the large number of interatomic interactions that must be that even the energetic order of the resulting structures may
considered in the energy computations, the necessity to use thdliffer.> Thus, effective methods of global optimization for

The theoretical prediction of a crystal structure from a
knowledge of only the structures of its constituent molecules
has been thought to be an extremely difficult, if not an
unsolvable, problerti® In general, the thermodynamically most
stable structure should be located as the correct structure
prediction; i.e., the structure with the lowest free energy should
be identified. Since this is computationally impractical, a
common simplification is to look for the global minimum of

Ewald summation to calculate the electrostatic enéfgi and crystal structures to locate low-energy structures can be used
the problem of the very definition of the energy of a crystal as an important tool for developing and parametrizing force
when the dipole moment of the unit cell is nonzéto? fields. In the present paper, we use a Lennard-Jorek26

The choice of the intermolecular potential also involves a Potential for hexasulfdf<® and the AMBER" potential for
difficult decision. There are many possible potential functions, Penzene molecules. These potentials have very simple func-
differing in parametrization and in the shape of the potential tional forms, and they reproduce the experimental crystal
energy function, described in the literatidfe. The choice of structures satisfactorily; therefore, despite some inherent prob-
the potential in the case of crystal calculations is critf¢4i425 lems in them (e.g., they may not give the correct lattice energy),
and a very sophisticated one, for example, one involving a they were selected for this work.

One of the common simplifications of the theoretical crystal
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knowledge, ref 12 is the only work that does not use any such the initial condition for solving the diffusion equation being
simplifications for theoretical crystal predictions. The Monte the identification of the deformed surface at time zero with the
Carlo technique implemented in the MPA program of Willidfns  complete undeformed surface.

was used there to predict the crystal structures of benzene and In the case of the DSM, the smoothing of the potential energy
urea, including the prediction of the space group symmetry and surface is a result of deformation of the pairwise terms of which
the numberZ of molecules in the unit cell (calculations were the complete energy function is constituted. The lowest local
carried out for 2 and 4 molecules in the unit cell, which minimum of each pairwise potential is preserved while higher
correspond to 15 and 27 degrees of freedom, respectively, forlocal minima are removed, and high-energy barriers are lowered,
both benzene and urea). consequently, the potential energy surface becomes smoother

In the approach presented here, no knowledge about the unitand possesses fewer local minima.
cell or space-group symmetry is assumed,; i.e., all molecules in  Both methods were applied to predict the crystal structures
the unit cell are allowed to move freely and independently as of the § molecule with the number of molecules in the unit
rigid bodies; only the geometry of the rigid molecules and the cell ranging from one to six and of the benzene molecule, with
parameters of the pairwise interatomic potentials are taken asone, two, three, four and eight molecules. In the casespf S
known. Since no space-group symmetry is assumed, the numbeboth methods located the energy-minimized experimental
of molecule<Z in the unit cell and their relative positions must structure in every computation. In addition, several artifacts
be predicted together with the cell parameters. Consequently,with slightly lower energies were found in the computations
a global-optimization algorithm is applied for each reasonable with three, five, or six molecules. The term “artifact” is used
number of molecules in the unit cell; the structure and the here to designate a minimum-energy structure that probably
number of molecules corresponding to the lowest energy per cannot be observed experimentally, as described in Section 8.
molecule are predicted. To ensure that the method did not missThe results for Smolecules suggest that the globally minimized
any important minima, and to test the power of the method, an results may be used as a basis for verification of intermolecular
additionalindependenglobal-minimum search is then carried force fields. In the case of benzene, the minimized experimental
out with twice as many molecules. If this additional search structure was found in the computations with four molecules
leads to the same structure as the previously computed lowest-and with eight molecules, and no lower-energy structures were
energy one (represented by a superlattice with a unit cell twice located; also, no lower-energy structures were found in the
as large as the predicted unit cell), then the predicted structurecomputations with one, two, or three molecules at atmospheric
and the predicted value @fare accepted. This additional search pressure, supporting the prediction# 4 as the correct one.
is a global optimization problem considerably more complex  Compared to our earlier work,the DEM has been extended
than the original one used for predicting the structure; in the to include the treatment of electrostatic interactions; in addition,
case of benzene, for which = 4, this additional search was for nonbonded interactions, the Gaussian approxim#Bof
carried out with 8 molecules, which corresponds to 51 degreesthe transformed Lennard-Jones potential was replaced by a cubic
of freedom. To our knowledge, there have been no previous spline approximation, which is more accurate, ared3imes
attempts at global optimization of crystal systems with this less expensive computationally. For this reason, the computa-
complexity. The computational expense of one global mini- tions for $ molecules were repeated, and the results are even
mization with a given number of molecules is equivalent to better than in the earlier pap#r:three previously missed
about 100 randomly started local minimizations of the original structures of very low energy (lower than the energy of the

potential energy. minimized experimental structure) were now found in the
Multitrajectory versions of the diffusion equation method COmputations with six molecules. . .
(DEM)37-41 and of the distance scaling method (DS#Fare The DSM was applied successfully in previous wérto

applied in this work for the crystal structure prediction. In both predict the global-minimum arrangements of argon clusters (a
methods, the multidimensional potential energy surface is Predecessor of the DSM, the shift metHdd? also correctly
smoothed until only a few potential wells, the traces of the located the lowest-minimum structures of water clusters). The

deepest minima of the original potential, remain. Those deepestcurrent work, the theoretical prediction of the crystal structures

minima are then recovered during the so-called reversing Of the hexasulfur and benzene molecules, shows that the DSM
procedure, in which the deformation is gradually removed, and iS at least as suitable as the DEM for this problem. Moreover,

the predicted crystal structure is taken as the minimum with the great advantage of the DSM is that it is easier to apply than
the lowest energy. Although the DEM and the DSM are applied the DEM.

here to pairwise potentials, they may also be used with

multibody potentials, but this would require additional consid- 2. Methods

erations. The energy surface of the original potential functfeum), u

Both methods are similar in that they are based on a peing a point in the multidimensional domain, usually possesses
consideration of trajectories of local minima that start from the 3 number of local minima that grows exponentially with the
minima on a hlghly deformed potential surface and are tracked dimension of the pr0b|eml The reason for app|y|ng the DEM
back to the undeformed surface during the so-called reversingor the DSM is to smooth this surface, to be able to use any
procedure. The lowest-energy local minima of the undeformed standard local minimization procedure to locate the few local
potential are among those obtained in that manner. minima that survive in the deformed surface, and to trace them

There are, however, some important differences between theback to the deepest minima of the original potential function
two methods. Inthe DEM, the physical nature of the diffusion by using the so-called “reversing procedure”. The position of
process leads to the smoothing of the potential surface; only aa surviving local minimum in the deformed surface depends
few local minima survive for strong deformations, and those on the magnitude of the deformation, and, usually, differs from
minima are related to the lowest minima of the original potential. the position of this minimum in the undeformed surface. Thus,
Mathematically, the smoothing arises from the convolution the goal of the reversing procedure is to recover the trajectory
formula for the solution of the diffusion equation (eq 3), with connecting all the positions of this minimum.
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In the case of the DEM, the functidifu) is treated as the  consists of consecutive steps, each of them carried out at a
initial condition for solving the diffusion equation, and the different deformation parameter, so that the deformation pa-
smoothed functioffr(u, t) is the solution of this equation, with  rameter in the step is smaller than that in the previous step.
t interpreted as time: Each reversing procedure step begins with local minimizations
of up to eight of the lowest-energy structures found at the
previous step. The number of resulting local minima is not
greater than eight and may be less because different minima
from the previous step may merge while changing the deforma-

F(u, 0) = f(u) tion parameter. Then, for each resulting local minimum, three
. . . random perturbations were carried out, in which all variables

For a sufficiently large timd, referred to as the maximum- ¢ 4 given structure (including lattice vectors) were changed
deformation time, the functiof(u, T) has only a few local  3ndomly in the range of 20% of the original value, and the
minima, which can easily be located by any strategy for global hertyrhed structures were minimized, producing up to 24
minimization, such as energy minimization or Monte Carlo with - gjtferent minima. At the end of this step, there were up to 32

AF(U, Y =2 F(u, (1)

local minimization (MCM)z®47 , , local minima, from which up to 8 lowest-energy structures were
In the case of the DSM, the transformation has a very simple chosen for the next reversing-procedure step. Before the next
algebraic form; it is the original formula, with the ateratom step starts, the deformation parameter is decreased. For the
distancer replaced by', where DEM, the deformation parameter (diffusion time) changes
according to a logarithmic scale, each time being divided by 2,
= L @) and the reversing procedure is terminated when the deformation
1+a reaches the value of 18 For the DSM, the deformation

parameter changes linearly by decreasing it by 0.03 in each

a is the deformation parameter, angls the minimum position  deformation step, and the reversing procedure ends when the
for the pairwise interaction. Then, the transformed Lennard- deformation is equal to 0. There were no perturbations carried
Jones potential has the forf(ro/r')*2 — 2(ro/r')®], and the total ~ out for the undeformed function; only local minimizations were
transformed Lennard-Jones energy, is a sum of all such  carried out, and the predicted crystal structure (including the
pairwise interactions. As follows from eq 2, the basin of the value ofZ) was taken as the one of lowest energy.
local minimum in the pairwise interaction increases with the  The value of the maximum-deformation tiriién the DEM
parametero, and consequently, the complete functidu.,, does not influence the result significantlyTfis chosen large
becomes smoother. Hence, the DSM deformation leads to aenough. Values of ranging from 0.5 to 5.0 were examined
Lennard-Jones potential energy surface with only a few local and led to the same global minimum. In the crystal calculations,
minima for larger values of, as in the case of the DEM. By  a change in the deformation parameteesults in changes in
contrast, however, to the DEM, where the system usually the energy and in the volume of the unit cell of each particular
expands significantly for larger values of time, the size of the structure; for small values othese changes occur rapidly with
structures corresponding to the local minima for the DSM- increasingt, whereas for larger values bthe energy and the
transformed Lennard-Jones potential remains similar to the volume of the unit cell stabilize. This value of timé chosen
original size with the undeformed potential. Since the electro- as the maximum-deformation tine in the present paper, the
static interaction is always accompanied by-al@ Lennard- value of T was chosen as 1.0.
Jones one, the same mathematical formula (eq 2) is used for = Similarly, the choice of the maximum-deformation parameter
the transformation of in the term 1/ as for the Lennard-Jones o, in the DSM is not crucial; the results remain unchanged if
term. this parameter is large enough; above a certain value, of

Each of the local-minimum configurations for large deforma- changes in the local-minima structures and their energies become
tions can then be traced back through the reversing proceduresmall, and this value af is chosen asimax  TheOmax parameter
in which the deformation parameter is decreased in steps, i.e.,has been determined to be 0.3 for the hexasulfur and benzene
the successive energy surfaces are closer to the original energgomputations.
surface. Local minimizations at each step start from the local
minima of the previous step or from perturbations of those 3. The DEM Applied to Crystals of Rigid Molecules
minima. Gay’s routine SUMSES a secant-type unconstrained
minimization solver, was used for all local minimizations.

Before the reversing procedure starts, a search consisting o
100 local minimizations, starting from randomly generated
points on the maximally deformed potential energy surface, is
carried out. Because the number of minima for a highly
deformed potential function is significantly less than the number “m )
of minima for an undeformed function, this search is highly F(u, t) = (2Vat) S f(v) exp(=|lu — v||%4t) dv (3)
effective and leads only to a few local minima. In addition, a
local minimization on a highly deformed surface is2times can be evaluated within a reasonable computer time, wiere
faster than one carried out for an undeformed function. The is the number of variables ands the integration variable; the
reversing procedure applied in the present work was a multi- computation of the integral in eq 3 is described in the present
trajectory one; i.e., more than one local minimum from the section.
maximally deformed surface was tracked back in the deforma- 3.1. Tetrahedra as a Tool for Solving the Diffusion
tion to the undeformed surface. The number of minima tracked Equation. The application of the DEM in its rigorous original
back was chosen as 8, and therefore, up to 8 of the lowest-formulation would require that the diffusion equation be solved
energy minima resulting from 100 local minimizations were in the independent variables of the crystal energy function (the
chosen for the reversing procedure. The reversing proceduresix parameters, b, c, a, 5, y of the unit cell, three Eulerian

As opposed to the DSM, whose application is straightforward,
fIhe implementation of the DEM requires a solution of eq 1.
This can be done if the multidimensional Fouritoisson
integral (the convolution of the functidnand a Gaussian-type
function whose width depends on tine
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angles per molecule defining the relative orientation of the of the vertexes of\;, A,, ..., Az and the Cartesian coordinates
molecule with respect to the unit cell, and three translations for of the vectorsa, b, ¢, as independent variables is that the
all molecules but one; the latter is a translationally fixed Cartesiarx, y, z-coordinates of any atom of any molecule are
reference, removing the three translational degrees of freedomlinear combinations of independent variables; this significantly
of the entire system). However, the Cartesian coordinates of simplifies the problem of solving the diffusion equation, as
the atoms belonging to the system, and, consequently, theshown in the following subsection.

interatomic distances and the energy, are very complicated 37 |nteratomic Distances and Convolution. The original
functions of these variables. Since it is practically impossible potential energy function is a sum (over lattice cells, molecules,

to solve the diffusion equation in such variables, we have anq atoms) of pairwise contributions. Hence, according to eq
adopted another approach. The lattice veaols care defined 3 the solution of the diffusion equation is also a sum (over the

by nine Cartesian coordinates; the position of the center of massgame cells, molecules, and atoms), but the pairwise contributions
and the orientation of each of the molecug M, ..., Mzin are now the FourierPoisson integrals of pairwise terms
the unit cell are defined by the Cartesian coordinates of the replacing the complete energy function. Each of the pairwise
Ve”?xes ofan auxiligry regula}r tetrahedron associated With e""Chterms is of the radial form (612 Lennard-Jones or electrostatic
particular molecule in the unit cell. For the molectlg i = interactions in this study). Consequently, by using the tetra-
L 2, ... Z, the associated regular teFrahedmnhas a given hedron approach, we need to calculate the Foufaisson
size, the same for each molecule, with its center at the Centerintegrals over the Cartesian coordinates of the vertexes of only
of mass ofM. Moreover, the vertexes of the tetrahedisn two tetrahedra (those associated with the two molecules whose
are treated as virtual atoms Of. the mol_e(_:Me so that they atoms interact) and over the Cartesian coordinates of the lattice
and.t_the r;aal atotms OE/ItihconstlltuteMQ. rigid s_tructure_. htTr:je vectorsa, b, ¢; in the situations in which an atom belonging to
Egrsn' Igfntr?e ?)?;ifi‘oonrg gf th: \;gcr)tg;gs (I);Str?eutglt?;ﬁe\gg?ang a mole_cule in the unit _ceII in_teracts with a nonunit cell atom
belonging to a translational image of the same molecule, the

the weights of the sum remain constant even if the molecule is . .
. . Cartesian coordinates of the vertexes of only one tetrahedron
translated or rotated. Hence, the Cartesiay, z-coordinates
and the vectors, b, c, are used.

of any atom of the molecul®/; in the unit cell are linear . ’ ) o .
combinations of the Cartesiaqy, z-coordinates, respectively, 10 calculate a FourierPoisson integral of pairwise terms, it
of the vertexes of the tetrahedraf;, with the constant IS necessary to apply formulas for computing interatomic
coefficients of these linear combinations being the weights, the distances. As mentioned in the previous subsectionxtlye
same for the, y, andz-coordinates. Consequently, the Cartesian z-coordinates of atom V of a molecubd,, (ny, ny, n/) can be

X, y, z-coordinates of an atom belonging to a molecMgna, represented as the following linear combinations of independent
Ny, Ne) (a translational image d¥; by the vectomsa + nyb + variables
nc.), for anyi = 1, 2, ...,Z and any integer numbers, np, N,
are linear combinations of they, z-coordinates of the vertexes ¥, =d'x¥ + ...+ d'xY + de5 + .+ d¥x
. V 171 474 5 7T
of the tetrahedrom; and thex, y, z-coordinates of the vectors
a, b, c. Obviously, to maintain the shape of the molecule, the Y VoV oW v
Cartesian coordinates of the vertexes of the tetrahedron must Yy =0diy; + ot dyyy Hdgys+ ot dy,  (4)
be correlated so that the vertexes constitute a regular tetrahedron
of a given size. z,=dzf +..+djz +dz+ ..+ dvz

At this point, we allow the Cartesian coordinates of the
vertexes of tetrahedray, Ay, ..., Az to assume any real values; \pqre the coefficients)’ with the indiceg < 4 correspond to

ie., We.allow V|qlat|ons of the initially imposed gqnstramts the vertexes of tetrahedrah,, (weights), Whereasi\sl = n,
(regularity and size of the tetrahedra). The positions of all q = q = The ind dent iabl ith
atoms, however, are calculated by using the same linear. s ~— Mo, G7 = Ne. € independent variables y, z wi

combinations as earlier, with the same unchanged coefficients indices <4 are the Cartesian coordinates of the four vertexes
Consequently, if the constraints imposed on the tetrahedra areOf Ai,, and those with indices 5 are the Cartesian coor_dln?t(?,s
f the vectorsa, b, c (they do not have the superscript “V

violated, the shapes of the corresponding molecules change. wé! ; ) .
treat all the Cartesian coordinates of the vertexesofA,, ... since they are the same independent variables for all atoms in

A, and all the Cartesian coordinates of the vectrb, c, as the system). If W is another atom of the system, the square of
independent variables. the distance between V and W can be represented as

The total number of independent variables with 4 vertexes v v W W v v W W
of each tetrahedron and 3 lattice vectors equa +2, and dist(V, W) = [dyx) — iy’ + ...+ dyx; — di'x;’ +
the physically acceptable geometries correspond to those points(dY — d)x; + ... + (dY — d¥)x,]* + [dYyy — d}'yy + ...+
of RIZ*9 that satisfy the regularity and size constraints for VoV W W VoW Ve 12
tetrahedraAs, Ay, ..., Az. These points constitute aZ6+ 9)- days —dgyy +(ds —ds)ys + ...+ (d7 —d7)y,]" +
dimensionasubmanifold(six external degrees of freedom per  [dYz/ — d2 + ...+ djz) — d}'Z) + (df — d2)z5 + ... +
tetrahedron and three lattice vectors) in the Cartesiad (12

\4 W 2
9)-dimensional space. (d; —d7)z]” (5)
To compensate for the violations of the imposed constraints,
we solve the diffusion equation R*Z+9 and observe its solution If iv = iw, then all thex, y, zvariables in eq 5 are independent

and carry out the reversing procedure and local minimizations variables. Ifiy = iw (i.e., V and W belong to translational

on a (& + 3)-dimensional submanifold corresponding to the images of the same molecule), the variabis xJ, X!, X!

physically acceptable geometries, with the six degrees of coincide with the variablesy’, xy', xy', X; , respectively, and

freedom of the entire system being eliminated. the same coincidence holds for the variableandz. In this
The great advantage of choosing the Cartesian coordinatescase
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dist(V, W) = [(d) — d¥)x + ...+ (d} — d)x} + to analytical formulas for the one-dimensional convolutions.
v W v e 12 v We v However, in the case of crystal structures, where high accuracy
(dg — dg)Xs t ...+ (d7 — d7))x]]" + [(dy —dp)y; +...+ is required for both small and large interatomic distances, it
(@ — dyy + (Y — d)ys + ... + (dY — d¥)y)? + was necessary to use as many as six Gaussian-type Yerms,
\ LY, v WV v W which was computationally expensive. In the current work, the
[(dy —d)zy + ...+ (dj —dy)z; +(d5s —d5)zs+ ... + one-dimensional convolutions are represented by cubic splines,
(d¥ — d¥z)? (6) as shown below.

First, 2000 points on the positive axis are chospie= pod,

where all thex, y, zvariables in eq 6 are independent variables. fori =1, 2, ..., 2000, wherg'® = 2 (the significance of this

Consequently, a pairwise interaction (of the original potential equality will be explained later), ando = 0.1. Then, the
function) has the fornf(dix; + ... + dix diyr + ... + diyk, functions 1f° and 11! are redefined to constant values equal
dhzs + ...+ diz), i.e., is a radial function of a linear combination  t0 1/pe®> and 1/p,'! respectively, for < py; i.e., the assigned
of k vectors inR®. The FourierPoisson integral for this  functions are bounded functions. Each of these functions is
interaction is the convolution dfand a product of Bidentical then approximated by linear functions in all intervats-{, pi)
normalized Gaussian-type functioms each in one of the fori =1, 2, .., 2000; the new function is continuous, but its
variablesxy, ..., X Y1, ..., Yk Z1, ..., Z, the width of the Gaussian first derivative is not continuous at the poings It is then
g is the same as the width of the Gaussian in eq 3 [defined by convolved with the Gaussian (k) exp(-r?), by calculating
the factor 1/(#)]. It can be shown (ref 49, section 20) that this analytically and summing up all the convolutions of the linear

convolution can be represented by a simpler formula approximations in the intervalgi( 1, p)) with the Gaussian. The
resulting functions (one for ¥ and one for I1) are continuous
XY, 2)x[G(X) G(Y) G(D](dx; + ... + dx, dyy; + ...+ functions, and now all the derivatives are continuous (ref 49

Ay 0z, + ...+ dz) (7) section 15). These two functions are then approximated by
cubic spline® based on the values of the functions at the points
where p,i=0,1,2,..,2000, and their coefficients are precalculated.
The two cubic splines are then used to evaluate the Lennard-
a(&/|d)) Jones function transformed according to the diffusion equation
G(X) = (gdl*...*gdk)(x) and gy(8) = g (8) method, by calculating the cubic splines for%4nd 111 for
J Bl the variableR = r/(4t;)2 (te being the effective time for a

The functionsG(X), and likewiseG(Y), G(2), are also normal- |toha|rW|§e mirei/czﬁgo n ddefmdid ;,r;]flu bsectlo?_ 3'|2) and by dividing
ized Gaussian-type functions em byr[(4te)™> andri(4te)™™, respectively.

To avoid the expensive computations of the square root of
1 X\2 the squared distance between two atoms, the actual computations
G(X) = —exp{— t_) 9) are carried out for the squared varia® in terms of the
te‘/J_’ € polynomialagRé + a,R* + a;R? + ag, whose coefficients depend
on the index of the interval p—1, p;) such thaqoiz_l <Rc<
piz. Thepy's for the cubic spline form a geometric series; this
choice of thep's was made to be able to achieve high accuracy
of the spline approximation for all distances, including very
small and very large ones, with a small amount of precalculated
coefficients. A straightforward way to locate the index would
involve an expensive computation of the logarithm RA;
instead, the binary computer representation of numbers is
exploited by utilizing the fact theq!® = 2,

This approach saves about-780% of the computer time
compared to the six-term Gaussian approximation. The spline
approximation is accurate for distances larger than the local
minimum distance of the transformed Lennard-Jones potential
and is satisfactory for all distances that have a chance of being
reached during local minimizations.

The electrostatic term also attains an infinite value for zero
distance; however, the functionrlis a locally integrable
function inRe. Hence, in contrast to the Lennard-Jones potential
function, it can be treated explicitly without being redefined in
the neighborhood af = 0. The one-dimensional convolution
used to calculate the transformed electrostatic term is propor-
tional to a convolution of the function sign(and a Gaussian,
which is represented analytically by a function g8()/r, where
te is the effective time; i.e., after transformation by the Foutier
Poisson integral, t/becomes erf(8te)/r.

wherete = [4t(d? + ... + d2)]¥2 te will be called the effective
time for a pairwise interaction. In other words, thé&-3
dimensional convolution is being replaced by a 3-dimensional
convolution of the functiorf(X, Y, Z) with a Gaussian-type
function G(X) G(Y) G(Z) where the width of5 depends on the
timet and also on the coefficient} of the linear combinations
associated with the pair of atoms in the pairwise interaction.
Since the functiotf is radial, the three-dimensional convolution
can easily be reduced to a one-dimensional convolution by using
spherical coordinates in the calculation of the convolution in
eq’.

3.3. One-Dimensional Convolutions with Gaussian-Type
Functions. The 6-12 Lennard-Jones contribution in a pairwise
interaction leads to one-dimensional convolutions of the func-
tions 1f5 and 1f1! with a Gaussian (the change in the power
of r is due to the substitution of spherical coordinates for the
spatialx, y, z-coordinates in the calculations of the convolution
in eq 7 for the Lennard-Jones term, which introduces a
multiplication by the Jacobian of this substitution). These
functions are not locally integrable in the neighborhood of
0 (i.e., the area of the region restricted by the functiom3 dr
1/r'1 and both axes of a two-dimensional coordinate system is
infinite in any neighborhood of zero distance); hence, to apply
the DEM, the Lennard-Jones functions have to be redefined for
small interatomic distances so that they are bounded functions.
The corr_espondlng one-d|men5|onal functions convolved WIFh 4. Lattice Summation
a Gaussian-type function cannot be represented by an analytical
formula. For this reason, approximations of the convolutions A precise calculation of the energy of a crystal involves an
are used. Previousf$;*°a sum of two Gaussian-type functions infinite number of terms. In practical computations, a distance
was used to approximate the Lennard-Jones potential; this ledcutoff must be applied for the interactions between the atoms
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in the unit cell and the non-unit-cell atoms. In this work, this TABLE 1. Parameters of Potential Functions®
is done by carrying out the lattice summations for only several 4iomtype ¢ (kcallmol) ro(R) g (electronic charge units)
layers of lattice cells surrounding the unit cell (usually 2

e, : . . S 0.805 3.66 0.00
layers are realistic from the point of view of the computational 0.120 3.70 —0.15
time). However, to achieve reasonable accuracy (about 99% H 0.010 3.08 0.15

or more), the pairwise interactions must be functions that N 2

converge fast enough to zero for large distances. Moreover, tﬁgr etIr:a?:tlr_c?sr,lgztai(r:deJn%r:zapgt%gg%gqlqjgrior/lr)kcal y n21gﬁ/r)6], and
since the same crystal lattice can be represented equivalently
by different unit cells, a cell chosen for the computations should 1/r — (1/r) erfc(/8tg). The term (Ir) erfc(r/8te) converges
have a shape that is close to a cube; cells that are long in onegapidly to zero for large distances and can be calculated directly
direction and thin in another would require more layers in the as is the Lennard-Jones function. The term i&/calculated
computations to give the same accuracy. A practical way to using the standard Ewald method. All the summations over
achieve a high accuracy is to use the reduced cell based on théhe real and over the reciprocal lattices are carried out by
three shortest noncoplanar vectors connecting the points of thesumming up over layers of unit cells or reciprocal unit cells,
computed lattice. respectively.

The DEM- and the DSM-transformed Lennard-Jones and  Similarly, in the case of the DSM, the function & a)/r
electrostatic interactions exhibit the same asymptotical behaviormust be subtracted from the transformed pairwise potential
for large distances as the original interactions, i.e., the order of (1 + a)/(r + roa) and added later as a separate term. The
convergence to zero isrf/for the transformed Lennard-Jones resulting difference of the functions converges to zero as the
interactions and tfor the transformed electrostatic interactions. function 1f2. Hence, when the charges in each unit cell sum
The Lennard-Jones contribution can be calculated in a straight-to zero, the interactions between such unit cells exhibito& 1/
forward way, as opposed to the electrostatic contribution, asymptotic behavior, whegeis the distance between the centers
because of the very slow convergence of the functiantd/ of the interacting unit cells. The functionet/is unconditionally
zero. Therefore, the Ewald meti§d!® is usually used to convergent inR%, and consequently, the difference of the
calculate the electrostatic energy of a crystal, both when the functions can be treated directly in the real lattice summation,
molecule has a dipole moment and when it does not have whereas the standard Ew#ld'® method is applied for the
one29:30 remaining (14 a)/r term.

The Ewa_ld method is based on the use of the _Fourier 5. Applications
transformation and the Parseval formula (ref 49, section 17).

. . Both methods are applied to predict the crystal structures of
The electrostatic energy is calculated as

Ss and benzene molecules. The molecules are assumed to be
E,=E,+E +E, (10) rigid. The sulfur atoms of different sSmolecules interact
according to a 612 Lennard-Jones potential. In the case of
where benzene, both-612 Lennard-Jones and Coulombic contributions
are present (even though benzene has no dipole moment, the C
™ erfe(@rjn nn) and H atoms carry partial charges). The parameters of the
Esj=- qq———— potentials for hexasulfé?*°and benzeri& (AMBER force field)
247 nSone Fijnngn, are presented in Table 1. The length of theSSbond in the
hexasulfur molecule is equal to 2.057 A, and consecutive bonds
1 exp(—(nm/a)z) make an angle of 102.18 The geometry of the benzene
E=— Z —_— X molecule was taken from AMBERE:the C-C and G-H bonds
27tV (my my =(0,0,0) m? have lengths of 1.400 A and 1.080 A, respectively, and the bond
M M angles are 120
{IS qcos@m-r)I?+[Y g sin@mm-r)3 The methods are applied with different values for the number
= = of molecules in the unit cell. Since there is no a priori

N knowledge abouZ, its value is also a result of the computations,

E — « > 11 so thatZ is also a predicted value, for which the global minimum
¢ VA | 11) of the energy per molecule is the smallest.
«/; = When the potentials adopted here are used to minimize the

energies of the experimental structures of the hexasulfur and
benzene crystals, slight deviations are observed. Therefore, the
target structures for the crystals studied here are those that result
from a minimization of the experimental crystal structures (see
footnotea in Tables 2-5).

The prime oveM (the number of atoms in the unit cell) denotes
thati = j if ng, Ny, Nc = 0, i.e., if the atoms$ andj lie in the unit
cell. Vis the volume of the original unit celt; andr; are the
Cartesian coordinates of atonandj, respectively, in the unit
cell, g andg; are the respective chargeg,n,n,n. is the distance
from atomi in the unit cell to the image of atofin the cell 6. Results and Discussion
Na, Mo, N, M is the linear combination of reciprocal vectds The results of the application of the DEM and the DSM to
b, € with m,, m,, m; as coefficients; the parameteris chosen hexasulfur and benzene molecules are presented in Tables 2
to ensure the fastest convergence of the sums in eq 11 bySince the computations with different numbers of molecules
estimating the maximum errors in the computation&gand frequently lead to superlattices and sublattices of the same
E: from eq 11, for a given size of the unit cell and for a number crystal structure, the tables include “standard equivalence
of values ofa. In the case in which rigid molecules are matrixes”, which define transformations from one realization
considered, the intramolecular interactions of the molecules in to another. A detailed explanation of the use of the standard
the unit cell are not included. equivalence matrices is presented in Appendix A. The con-
To apply the Ewald method to the DEM-transformed ventional lattices corresponding to the calculated structures along
electrostatic potential, erite)/r, the latter is represented as with their probable space-group symmetry are listed in Tables
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TABLE 2: Parameters of Calculated Structures for & Crystals Using the DEM?

volume of

energy unitcell  equivalence
 ad) b@A) c@A) o(deg) B(deg) y(deg) (kcal/mol) (A¥mol)  indicatof standard equivalence matt
3 1 5588 8493 8.614 95.47 103.30 104.27 —46.04 126.84 1 0 0
0 1 0
0 0 1
2 5560 8528 8.558 95.83 103.42 101.79 —45.86 127.20 1 0 0
0 1 0
0 0 1
3 6.369 8010 8.010 95.07 75.00 104.99 —45.81 127.08 2/3 1/3 —1/3
—1/3 1/3 —4/3
1/3 2/3 4/3
4 6.880 7.034  8.552 73.57 81.12 75.45 —45.73 127.57 1 0 0
0 1 0
0 0 1
5 6.889 7.000 8.497 75.30 81.73 76.07 —45.54 127.73 1 0 0
0 1 0
0 0 1
6 5518 8413 8511 82.91 99.12 83.63 —45.41 127.90 1 0 0
0 1 0
0 0 1
7 6.725 6.998 8.554 101.84 96.70 77.34 —45.34 127.79 1 1 -1
-1 1 0
1 0 1
6 1 8493 8.614 11.175 103.30 75.73 84.52 —46.06 126.84 Z=3,n=1 0 1 0
0 0 -1
-2 0 0
2 8499 8598 10.884 88.81 74.79 84.08 —45.94 127.15 1 0 0
0 1 0
0 0 1
3 8498 8573 10.917 74.34 87.33 84.91 —45.90 127.11 1 0 0
0 1 0
0 0 1
4 6.369 10.774 11.451 101.90 86.29 97.10 —45.82 127.08 £Z3,n=3 2/3 1/3 —1/3
—1/3 1/3 7/3
0 -1 1
5 7820 10935 11.106 119.34 109.10 90.19-45.61 127.77 —1/2 —1/2 -1
1 0 0
0 -1 1
6 8497 8558 10940 89.06 104.65 95.26 —45.55 12756 Z=3,n=5 0 0 -1
-1 1 0
1 1 0

aMinimized experimental structure found by the DEM is shown with bold italic font, in a different, but equivalent, representation from the one
usually used; see section 6 and also footndtasde. ® The number of the successive lowest-energy local-minimum structure for givedhows
equivalent unit cell with lowest possibigin the present Table. The lattice vectors in the current line can be expressed as linear combinations of
the lattice vectors of the probable lattice (shown in Table 6) with the elements of the standard equivalence matrix; i.e, the product of the lattice
vectors from Table 6 and the standard matrix produces a set of lattice vectors whose parameters are very close to those in the e&oent line.
an example of how to show the agreement between the lattice parameters of the equivalent structures, see Appendix A.

6 and 7 for hexasulfur and benzene, respectively; the standardequivalent to the trigonal unit cell of the minimized experimental
equivalence matrices in Tables-8 show how the calculated structure; in addition, the method located two lower-energy
lattices are derived from the corresponding conventional lattices. artifacts. The artifact with the lowest energy (see Tablg 2,
Sulfur-6 crystallizes in the rhombohedral space gr&® 3,n= 1) had been fourfd previously. With six molecules the
with one molecule in the unit cell, whose lattice paraméters problem of global minimization becomes very challenging, but
are 4= 6.407 A andw’ = 115.19. After energy minimization, the DEM found a superlattice of the lowest-energy artffa@
these values becoflea = 6.370 A anda’ = 116.22. This = 3,n = 1) as the lowest-energy minimum. As in the earlier
minimized structure can also be represented as a crystal withwork,*! the minimized experimental structure (as a duplication
three molecules in a trigonal unit cBl(the first, R3, structure of Z = 3, n = 3) was found; a duplication of another low-
in Table 6). energy artifactZ = 3, n = 5) was also obtained. In addition,
Without assuming any of this information, the DEM algorithm two new low-energy structureZ (< 6,n=2 andZ=6,n=
was carried out with three and with six molecules of S 3), lower in energy than the minimized experimental one, were
Previously, the minimized experimental structure was found as located; they are also artifacts.
the lowest-energy structure with one, two, four, or five In general, the results forgSnolecules are a repetition of
molecules!! with three molecules, a lower energy artifact was our earlier result§ to a certain extent. Since our current
found?? but this was not found with six molecules. For this algorithm is much faster than its earlier version, it was possible
reason, we repeated the computations only with three and sixto increase the size of the perturbations in the reversing
molecules using the new, more accurate approximation of the procedure (see section 2); this sometimes results in an increase
transformed Lennard-Jones potential function with cubic splines in the number of iterations in the local minimizations and may
(see section 3.3). With three molecules, the DEM located the be more time-consuming. However, the modified DEM seems
structure (shown in bold italic font in Table 2), which is to be even more powerful than its previous verstband the



Diffusion Equation and Distance Scaling Methods J. Phys. Chem. A, Vol. 102, No. 17, 1998911

TABLE 3: Parameters of Calculated Structures for CsHg Crystals Using the DEM?

volume of
energy unit cell equivalence
Z  a®) b@A c@A) o«(deg) p(deg) y(deg) (kcal/mol) (A¥mol) indicatof standard equivalence matt#
1 1 4.860 4.860 4.860 93.49 93.49 86.52 —11.91 114.21 -1/3 1/3 1/3
2/3 1/3 1/3
1/3 2/3 -1/3
2 5.199 5.199 5.255 77.84 102.16 64.27 —11.73 117.49 1/2 1/2 0
-1/2 1/2 0
0 0 1
2 1 5511 6.264 6.751 90.00 90.00 73.12 —13.78 111.50 -1 0 0
-1 0 -1
0 -1 0
2 5421 5.496 7.641 90.00 74.07 90.00 —13.51 109.47 1 0 0
0 -1 0
0 0 -1
3 5487 6.374 7.163 90.00 90.00 64.52 —12.63 113.08 1 0 0
0 0 -1
0 1 0
3 1 5412 9.190 9.190 63.76 101.32 78.68 —12.74 126.88 0 0 -1
-1/3 1/3 -1/3
1/3 2/3 1/3
2 5.355 6.283 10.674 81.69 89.74 71.98 —12.71 112.53 1 0 0
0 1 0
0 0 1
3 5412 5.416 11.901 89.21 81.05 87.22 —12.67 114.72 1 0 0
0 1 0
0 0 1
4 1 6.605 7.431 9.167 90.00 90.00 90.00 —13.88 112.49 0 0 1
1 0 0
0 1 0
2 6.265 8.714 8.714 101.55 100.58 100.58 —13.79 11150 ZzZ=2,n=1 -1 0 -1
1 1 0
1 -1 0
3 7.719 7.719 8.065 73.18 106.82 89.21 —13.51 10947 Z=2,n=2 -1 -1 0
1 -1 0
1 0 1
8 1 7432 11.298 11.298 71.53 90.00 90.00 —13.88 112.48 Z4,n=1 -1 0 0
0 1 1
0 1 -1
2 9.753 9.753 11.021 112.23 112.23 87.62 —13.79 11150 ZzZ=2,n=1 0 1 1
0 -1 1
2 0 0

aMinimized experimental structure found by the DEM is shown with bold italic font, in a different, but equivalent, representation from the one
usually used; see Section 6 and also footndtaade. ® The number of the successive lowest-energy local-minimum structure for give®hows
equivalent unit cell with lowest possibiein the present table. The lattice vectors in the current line can be expressed as linear combinations of
the lattice vectors of the probable lattice (shown in Table 7) with the elements of the standard equivalence matrix; i.e, the product of the lattice
vectors from Table 7 and the standard matrix produces a set of lattice vectors whose parameters are very close to those in the e&oent line.
an example of how to show the agreement between the lattice parameters of the equivalent structures, see Appendix A.

current application revealed the lowest-energy (artifact) with = 5, n = 2) of slightly lower energies, specific for this number
six molecules, whereas the previous application reached onlyof molecules. As shown in Table 4, many of the low-energy
the minimized experimental structure with this number of structures obtained with lower numbers of molecules are also
molecules. located with higher numbers of molecules, which strongly
The DSM algorithm was applied with a number of S indicates that the DSM reached all or almost all of the deepest
molecules ranging from one to six. With one, two, or four local minima of the potential.
molecules, the minimized experimental structure was found as As a prediction of the crystal structure, the lowest-energy
the lowest-energy structure. This structure was also found with structure from Table 4 should be chosen provided that it is
three molecules, together with two lower-energy artifacts, the physically realistic; when two structures have the same lowest
same as those located by the DEM. With six molecules, the energy, the one of the smaller numbers of molecules should be
DSM found the same superlattice of the lowest-energy artifact chosen. As Table 4 indicates, the lowest energy per molecule
(see Table 4Z = 3, n = 1) as the lowest-energy minimum, is obtained with three moleculeZ & 3, n = 1) and with six
and a superlattice of the minimized experimental crystal structure moleculesZ = 6, n = 1), and these represent the same lattice.
(Zz = 3, n = 3); the latter structure is the trigonal lattice On this basis, the structu2= 3, n = 1 should be chosen as
corresponding to the minimized experimental crystal structure the prediction of the crystal structure. However, as discussed
with one moleculeZ = 1,n= 1 in Table 4). In addition, the  in Section 8, this structure probably could not exist physically.
method found two other artifacts, specific for six moleculgs ( The minimized experimental structure is found as one of the
=6,n=2andZ = 6, n = 3). With five molecules, the lowest- (but not the lowest-) energy structures of this potential.
minimized experimental structure was found as the third lowest- The fact that so many artifacts were found by both global-energy
energy structure, together with two artifac€ 5,n=1;Z minimization methods shows how powerful these methods are.
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TABLE 4: Parameters of Calculated Structures for & Crystals Using the DSM

Wawak et al.

volume of
energy unit cell equivalence
z  ad) b@A) c@A) o(deg) B(deg) y(deg) (kcal/mol) (A3¥mol) indicatof standard equivalence matt#
1 1 3765 6.369 6.370 116.23 101.34 101.34-45.79 127.10 0 0 -1
-1/3 —2/3 1/3
-1/3 1/3 1/3
2 3.769 6.362 6.362 117.75 106.17 73.83 —45.62 127.67 0 0 1
-1/2 -1/2 0
1/2 —1/2 0
3 4.189 5.705 6.182 67.67 70.36 88.65 —45.31 127.80 1 0 0
0 1 0
0 0 1
4 4990 4.990 5.603 105.62 105.62 83.27 —44.72 129.22 1/2 -1/2 0
1/2 1/2 0
0 0 1
2 1 6.369 6.369 7.526 101.36 78.64 63.78 —45.80 127.09 Z1ln=1 -1/3 —2/3 1/3
1/3 -1/3 -1/3
0 0 2
2 6.031 6.798 6.848 90.00 90.00 65.41 —45.62 127.64 1 0 0
0 0 -1
0 1 0
3 6.382 6.382 7.098 90.00 90.00 117.87 —45.56 127.77 1/2 1/2 0
—=1/2 1/2 0
0 0 1
4 6.193 6.631 7.157 10341 84.82 66.04 —45.32 127.79 Z=1,n=3 -1 0 1
0 -1 1
1 1 0
5 6.209 6.209 7.059 85.53 94.47 106.31 —44.21 129.96 1/2 1/2 0
—-1/2 1/2 0
0 0 1
6 5.763 6.380 8.136 77.63 94.84 65.35 —43.93 130.22 -1 0 0
0 1 0
0 0 -1
3 1 5588 8.493 8.614 95.47 103.30 104.27 —46.04 126.84 1 0 0
0 1 0
0 0 1
2 5560 8.528 8.558 95.83 103.42 101.79 —45.86 127.20 1 0 0
0 1 0
0 0 1
3 6.730 6.730 8.850 86.38 86.38 106.95 —45.81 127.08 Z1,n=1 1/3 2/3 2/3
1/3 -1/3 2/3
2/3 1/3 —5/3
4 6.880 7.034 8.552 73.57 81.12 75.45 —45.73 127.57 1 0 0
0 1 0
0 0 1
5 6.363 6.429 10.002 84.12 97.47 72.69 —45.65 12765 Z=1,n=2 1/2 1/2 0
1/2 -1/2 1
0 -1 -2
6 6.889 7.000 8.497 75.30 81.73 76.07 —45.54 127.73 1 0 0
0 1 0
0 0 1
7 6.725 6.998 8.554 78.16 96.70 102.66 —45.34 12779 Z=1,n=3 -1 -1 1
-1 1 0
-1 0 -1
4 1 6.369 7526 11.451 109.18 86.29 101.35—-45.81 127.08 Z1l,n=1 -1/3 —2/3 1/3
0 0 -2
1 0 1
2 6.429 7.537 11.307 79.83 88.47 108.09 —45.66 12765 Z=1,n=2 —=1/2 1/2 -1
0 0 2
1/2 3/2 1
3 6.358 7.536 11.655 71.14 94.83 105.09 —45.62 127.55 1 0 0
0 0 2
0 -1 1
4 7.157 8577 8.820 103.64 96.46 76.72 —45.34 12778 Z=1,n=3 1 1 0
2 0 -1
-1 1 -1
5 1 8.005 8.006 10.783 73.44 73.45 95.18 —45.93 126.96 1 0 0
0 1 0
0 0 1
2 6.796 8516 11.325 85.73 78.70 82.39 —45.82 127.24 1 0 0
0 1 0
0 0 1
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TABLE 4 (Continued)

volume of
energy unit cell equivalence
Z  a®) b@A c@A) o«(deg) p(deg) y(deg) (kcal/mol) (A¥mol) indicatof standard equivalence matt#
3 6.739 8.848 11.440 69.92 83.02 86.51 —45.80 127.17 Z1l,n=1 1/3 2/3 2/3
-1/3 1/3 —5/3
-1 0 1
4 6.805 8.507 11.325 86.26 78.53 82.57 —45.76 127.31 1 0 0
0 1 0
0 0 1
6 1 5588 10.865 12.660 88.88 89.49 82.00 —46.05 126.84 Z=3,n=1 1 0 0
1 1 1
0 -1 1
2 8499 8.598 10.884 88.81 74.79 84.08 —45.94 127.15 1 0 0
0 1 0
0 0 1
3 8.498 8.573 10.917 74.34 87.33 8491 —45.90 127.11 1 0 0
0 1 0
0 0 1
4 6.369 10.774 11.451 101.90 86.29 97.10 —45.82 127.08 £Z1l,n=1 2/3 1/3 1/3
-1/3 1/3 713
0 -1 1
5 6.880 8.552 14.021 102.01 76.20 81.12 —45.74 12756 Z=3,n=4 1 0 0
0 0 1
1 -2 0
6 6.429 11.135 11.307 108.71 91.53 87.70 —45.66 127.73 £Z1l,n=2 —=1/2 1/2 -1
1/2 1/2 -2
—=1/2 —3/2 -1
7 6.377 11.223 11.288 71.88 87.84 86.81 —45.62 127.74 1/2 1/2 0
—=1/2 1/2 -1
-1/2 3/2 0

aMinimized experimental structure found by the DSM is shown with bold italic font, in a different, but equivalent, representation from the one
usually used; see section 6 and also footndtasde. ® The number of the successive lowest-energy local-minimum structure for giveShows
equivalent unit cell with lowest possibein the present table. The lattice vectors in the current line can be expressed as linear combinations of
the lattice vectors of the probable lattice (shown in Table 6) with the elements of the standard equivalence matrix; i.e, the product of the lattice
vectors from Table 6 and the standard matrix produces a set of lattice vectors whose parameters are very close to those in the efoent line.
an example of how to show the agreement between the lattice parameters of the equivalent structures, see Appendix A.

The question of how to improve the potential is not a subject between our three lowest-energy structures for benzére (
of this paper, but it is apparent that the methods introduced here4,n=1;Z=2,n=1;Z=2,n= 2 of Tables 3, 5, and 7) and

can be used as a tool for testing and refining a potential. the structures obtained by Gibson and Schefagad by
Benzene crystallizes with four molecules in the unit cell of Dzyabchenk&*55
an orthorhombic latticé?53 The parameters of the unit cell of The minimized experimental crystal structure of hexasulfur

the experimental structure aae= 7.357,b = 9.373,c = 6.701 (Z = 3) located by both methods, the DSM and the DEM, is
A. After energy minimization with the AMBER potential, these  shown in Figure 1. The predicted crystal structure of benzene
values becama = 7.431,b = 9.167,c = 6.605 A. The DEM is presented in Figure 2. Figure 3 shows the lowest-energy
was applied with one, two, three, four, or eight molecules, using structures for hexasulfurZ(= 3) and benzeneZ( = 4),

the AMBER potential. The computations revealed the mini- corresponding to the most deformed potentials by the DSM (i.e.,
mized experimental structure with four or eight molecules (see when the deformation parameteris the largest).

Table 3,Z=4,n=1andZ=8,n=1). The lowest energies

obtained with one, two, or three molecules were higher than 7. Pressure Dependence for Benzene

those obtained with four or eight molecules.

The DSM was applied to benzene with the same numbers of
molecules. As with the DEM, the DSM found the minimized
experimental structure with four or eight molecules (see Table
5,Z=4,n=1andZ= 8, n = 1); the lowest energies obtained
with one, two, or three molecules were higher. Consequently,
the value ofZ = 4 and the structur = 4, n = 1 is chosen as

the predicted crystal structure. By contrast to the calculations minimized experimental lattice. The high-pressure structures

on hexasulfur, few higher-energy artifacts were found. ; .
. . . are geometrically close to their low-pressure counterparts, but,
There is good agreement between the predicted and SXPeT Jepending on the applied pressure, the energetic order of the
mental benzene crystal structures. The predicted unit cell is P g pp P ' 9

orthorhombic withPbcasymmetry (see Table 7), and discrep- g:)l;l;maatl ggirt])%?sar(glsgﬁczsvrf)m 'IQEI(LESS utlés otfhthe Ig;ﬁatlhmlr][lmlga- d
ancies between the experimental and the predicted crystal-_~ . » together wi € standar
structure lattice-vector lengtha, b, andc, are 1.0%, 2.2%, and equivalence matrix for the lowest-energy structure.

1.4%, respectively (see Tables 3 and 5). Thed@¥le between

the planes of the benzene molecules in the experimental crysta
structuré>5253 (the so-called edge-to-fateearrangement of Tables 6 and 7 list the probable space-group symmetry of
molecules) is predicted correctly. There is also good agreementthe calculated structures ofs Sand benzene, respectively,

All of the above computations were carried out with no
pressure term included in the total energy function. Since
benzene crystallizes differently when pressure is applied, we
reminimized several lowest-energy structures (listed in Table
5) with the pressure correction term of Busing and Mafsui
included, and the results are shown in Table 8. The reference
volume V, was taken as 112.493Anol, the volume of the

p. Space-Group Symmetry of Computed Structures
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TABLE 5: Parameters of Calculated Structures for CgHg Crystals Using the DSM

volume of

energy unit cell equivalence
z  ad) b@A) c@A) o(deg) B(deg) y(deg) (kcal/mol) (A3¥mol) indicatof standard equivalence matt#
1 1 4860 4.860 4.860 86.51 86.51 86.51 —11.91 114.21 2/3 1/3 1/3
-1/3 1/3 1/3
-1/3 —2/3 1/3
2 5199 5.199 5.256 77.83 77.83 115.73 —11.73 117.49 1/2 1/2 0
1/2 -1/2 0
0 0 -1
2 1 5511 6.264 6.751 90.00 90.00 73.12 —13.78 111.50 -1 0 0
-1 0 -1
0 -1 0
2 5421 5.496 7.641 90.00 74.07 90.00 —13.51 109.47 1 0 0
0 -1 0
0 0 -1
3 5435 6.489 7.790 66.06 90.00 114.74 —13.07 111.62 0 1 0
1/2 -1/2 0
0 0 -1
4 5567 5567 7.923 103.52 103.52 81.20 —12.89 115.17 -1/2 -1/2 0
=1/2 1/2 0
0 0 -1
5 5.487 6.374 7.163 90.00 90.00 64.52 —12.63 113.08 1 0 0
0 0 -1
0 1 0
3 1 5412 9190 9.190 63.76  101.32 78.68 —12.74 126.88 0 0 -1
-1/3 1/3 -1/3
1/3 2/3 1/3
2 5355 6.283 10.674 81.69 89.74 71.98 —12.71 112.53 1 0 0
0 1 0
0 0 1
3 5412 5416 11.901 89.21 81.05 87.22 —12.67 114.72 1 0 0
0 1 0
0 0 1
4 1 6.605 7431 9.167 90.00 90.00 90.00 —13.88 112.49 0 0 1
1 0 0
0 1 0
2 6.752 7.039 9.469 97.65 90.00 90.00 —13.79 11150 z=2,n=1 0 -1 0
0 0 -1
2 0 1
3 7719 7.719 8.065 73.18 106.82 89.21 —13.51 109.47 Z=2,n=2 -1 -1 0
1 -1 0
1 0 1
8 1 6.605 9.168 14.861 90.00 90.00 90.00 —13.88 112.48 Z4,n=1 0 0 1
0 1 0
-2 0 0
2 7.039 9470 13.502 90.00 90.00 97.65 —13.79 11150 z=2,n=1 0 0 -1
2 0 1
0 -2 0
3 6,586 7.310 18.705 86.49 90.00 90.00 —13.73 112.37 0 1 0
1 0 0
0 0 -1

aMinimized experimental structure found by the DSM is shown with bold italic font, in a different, but equivalent, representation from the one
usually used; see section 6 and also footndtasde. ® The number of the successive lowest-energy local-minimum structure for giveBhows
equivalent unit cell with lowest possibiein the present table. The lattice vectors in the current line can be expressed as linear combinations of
the lattice vectors of the probable lattice (shown in Table 7) with the elements of the standard equivalence matrix; i.e, the product of the lattice
vectors from Table 7 and the standard matrix produces a set of lattice vectors whose parameters are very close to those in the e&oent line.
an example of how to show the agreement between the lattice parameters of the equivalent structures, see Appendix A.

deduced by methods described elsewRgr&hese have several  of these hadP1l symmetry, although on@®1 structure was
features of interest. First, although both molecules have 3 obtained in each case. The remainder of the structures fall into
symmetry, there is a marked scarcity of rhombohedral or trigonal common classes of monoclinic primitive or centered space
space groups in either table. Both molecules did packR3n groups.

structures in the computations with= 1; this corresponded Another point of interest concerns the two lowest-energy
to the experimentally observed structure faoy I8t not for packings of $ and benzene when the unit cell contained one
benzene. The only other rhombohedral structure wasRBie  molecule (Tables 4, 3, and 5, respectively). In both cases, the
lattice obtained with benzene with = 3, which had nine molecules in the lowest-energy structure were arranged in layers
molecules rather than three in the (trigonal) unit cell. There is of hexagonal arrays with their mean planes parallel toGhe
also a paucity of orthorhombic structures, namely, one each for face, the molecules in adjacent layers being offset in a manner
Ss and benzene (the latter corresponding to the experimentally consistent with rhombohedral centering. Also, in both cases,
observedPbcalow-pressure structure). By contrast, there is a the molecules in the next lowest-energy structure were arranged
large number of triclinic lattices, especially fog;$he majority in rows lying parallel to théb axis in theC face, with their



Diffusion Equation and Distance Scaling Methods J. Phys. Chem. A, Vol. 102, No. 17, 1998915

TABLE 6: Probable Space-Group Symmetry of the Calculated $ Structures
equivalent structures z NP a(A) b (A) c(A) o(deg) p(deg) y(deg) space group

Tab.4z=1,n=1;Tab.4z=2,n=1

TNy 3 we 10816 10816 3765 90.00  90.00 12000 R3
Tab.4Z=6,n=4;Tab.2Z=6,n=4

S Ter=e 2 10892 6578  3.769  90.00 10898  90.00 C2/m
Tab.4Z=1,n=3;Tab.4Z=2,n=4 B
Tab4Z=3,n=7:Tab2z=3.n=7 1 1/2 4189 5705 6182  67.67 7036  88.65 PI
Tab.4Z=4,n=4

Tab.4Z=1,n=4 2 14 7458 6630 5603 9000 11111  90.00 C2/m
Tab.4Z=2,n=2 2 1 6031 6848 6798  90.00 11459  90.00 P2yc
Tab.4Z=2,n=3 4 12 10934 6586  7.098 9000  90.00  90.00 Cme
Tab.4Z=2,n=5 4 12 9938 7446 7059 9000 9559  90.00 C2c
PRt enT it 3 1and1n 5588 8493 8614 9547 10330 10427 P1
Tab4z=3,n=2;Tab2z=3,n=2 3 land1/2 5560 8528 8558 9583 10342 10179 PI
PRastengTeb2=30=4 53 qand1n 6.880 7.034 8552 7357 8112 7545 PI
Tab.2Z=3,n=6 3 land1/2 5518 8413 8511 8291 9912  83.63 Pl
Tab2z— e Tab.2Z=3.n=5 "3 jand12 6.889  7.000 8497 7530 8173  76.07 PI
Tab.4Z=4,n=3 2 1 6.358 11.030 3768  90.00 10509  90.00 P2y/n
Tab.4Z=5,n=1° 5 2and1/2 8005 8006 10783 7344 7345 9518 P1
Tab.4Z=5n=2 5 2and1/2 6796 8516 11325 8573 7870  82.39 PI
Tab.4Z=5n=4 5 5 6.805 8507 11325 8626 7853 8257 Pl
Tab4Z=6,n=2;Tab2z=6,n=2 6 2and2(1/2) 8499 8598 10.884 8881 7479 8408 PI
Tab4Z=6,n=3;Tab2Z=6,n=3 6 3 8498 8573 10917 7434 8733 8491 PI
Tab.4Z=6,n=7° 3 12andl/4 10922 6586 11454  90.00 11153  90.00 C2/m
Tab.2Z=6,n=5° 2 2(4) 10935 6591 8938  90.00 12750  90.00 C2/m
Tab.4Z=2,n=6 2 2 5763 6380 8136 10238 9484 11465 Pl

aNumber of molecules in the probable unit céiINumber of molecules in the probable asymmetric unormals to the mean planes of all
molecules lie in planes parallel to the (1, 1, 0) plane and make an angle 6f\@8i#h8the c axis; centers of three molecules lie on a line from
(0, 0,0) to (1, 1, 1), and centers of the remaining two lie on parallel line through (1/2, 1/2, 1/2); all molecules are related by inversion but not by
crystallographic rotation or reflectiod Asymmetric unit consists of two whole molecules and two unrelated half-moleéullagtice consists of
layers of aC2/m lattice with four molecules in the unit cell ary molecule in the asymmetric unit, alternating with layers @zim lattice with
two molecules in the unit cell antl; molecule in the asymmetric unit; inversion points of these two lattices are at (0, 0, 0) and (0, 1/2, 1/2),
respectiviey! Asymmetric unit consists of unrelated half-molecule and 1/4 moleéulattice consists of alternating layers of two unrela@gim
lattices with two molecules in the unit cell add molecule in the asymmetric unit, and inversion points at (0, 0, 0) and (0, 1/2, 1/2), respectively.

mean planes perpendicular to fiéace and with adjacent rows  implausible packing, for much the same reason, isG@@ém
offset in a manner consistent wit-face centering. ~ structure of § obtained by the DSM with six molecules
Perhaps the greatest interest attaches to the trichdic (Table 4,Z2=6,n=7). As noted in footnoté of Table 6, this
packings of $and benzene. All but two of thel structures structure can be generated by merging alternate layer€afma
of Ss, together with the singl®1 packing of benzene, involve  structure with four molecules in the unit cell aig molecule
packings that are physically rather improbable, since their in the asymmetric unit, and anoth€2/m structure with two
asymmetric units contain one or more half-molecules plus one molecules in the unit cell antl; molecule in the asymmetric
or more whole molecules. Each half-molecule is related by unit. Again, itis very difficult to see how such a structure would
inversion through the origin to the other half of either the same be nucleated. Structures such as the ones discussed here must
molecule or one of its translational images, and each whole be regarded as artifacts of the computational method, which
molecule is related by inversion in a similar way to another relies entirely on energy minimization and takes no account of
whole molecule. The whole molecules and half-molecules in the process by which the crystal is formed. Takative energies
these packings are crystallographically unrelated. Regarded af the physically plausible and implausible structures could
regular packings of disjoint points in space, such arrangementspresumably be changed by adjusting the parameters of the
of atoms are perfectly legitimate; however, it is difficult to see potential, but this may not eliminate the implausible structures;
how a real crystal could be nucleated and built up from identical therefore, the existence of such artifactual structures should
molecules whose environments differ so significantly. These probably be accepted as due to the incompleteness of the
packings are geometrically reasonable but physically unreason-thermodynamic function. In the calculations withy, Swo
able. This argument does not apply to #& structure of § artifactual packings (for each of three, five, and six molecules,
that was obtained whed = 1, because in that packing all respectively, in the unit cell) were found that had lower energies
molecules would experience the same environment. Anotherthan the experimentally observed packing; however, the ex-
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TABLE 7: Probable Space-Group Symmetry of the Calculated Benzene Structures

equivalent structures z NP a(h) b (A) c(A) a(deg) p(deg) y(deg) space group
Tab.3Z=1,n=1;Tab.5Z=1,n=1 3 1/6 6.661 6.661 8.916 90.00 90.00 120.00 R3
Tab.3Z=1,n=2;Tab.5Z2=1,n=2 2 1/4 5.530 8.804 5.255 90.00 113.35 90.00 C2/m
Tab.3Z=2,n=1;Tab.5Z2=2,n=1
Tab.3Z=4,n=2;Tab.5Z2=4,n=2 2 1/2 5511 6.751 7.040 90.00 121.63 90.00 P2i/c
Tab.3Z=8,n=2; Tab.52=8,n=2
1ap3z- i: nZ g japoz = i: nZ2 2 12 5421 5497 7641  90.00 10593  90.00 P2jc
Tab.5Z2=2,n=3 4 1/2 11.788 5.435 7.791 90.00 116.55 90.00 C2/c
Tab.5Z2=2,n=4 4 2(1/2¥ 8.453 7.246 7.923 90.00 107.94 90.00 Cm
Tab.3Z=2,n=3;Tab.52=2,n=5 2 1/2 5.487 7.163 6.374 90.00 115.48 90.00 P2y/m
Tab.3Z=3,n=1;Tab.52=3,n=1 9 1 15.608 15.608 5.412 90.00 90.00 120.00 R3
Tab.3Z2=3,n=2;Tab.52=3,n=2 3 1land 1/2 5.355 6.283 10.674 81.69 89.74 71.98 P1
Tab.3Z2=3,n=3;Tab.52=3,n=3 3 3 5.412 5.416 11.901 89.21 81.05 87.22 P1
yan3z- g: n= i T = g: nzloy 12 7431 9167 6605 9000  90.00  90.00 Pbca
Tab.52=8,n=3 8 4 18.705 6.586 7.310 90.00 93.51 90.00 Pc

aNumber of molecules in the probable unit céINumber of molecules in the probable asymmetric unksymmetric unit consists of two

unrelated half-molecules.

L) g

Figure 1. Minimized experimental structure for hexasulfur found by
the DEM and the DSMd = b = 10.816 A,c=3.764 A a = g =
90, y = 120).

Figure 2. (a, top) Predicted crystal structure of benzene found by the
DEM and the DSM Z = 4, n = 1 from Table 5;a = 6.605 A,b =
7.431 A,c =9.167 A a. = 8 = y = 90.00). (b, bottom) Details of
edge-to-face arrangement of benzene molecules.

perimentally observed crystal structure is still among the lowest-
energy ones computed.

9. Conclusions

We have presented two methods for global minimization, both

Figure 3. Lowest-energy structures corresponding to the most
deformed potentials using the DSM for (a, top) hexasullu(3; a
=5407 Ab=8.113A,c=8.241 A,0 =93.78, 3 =T75.72,y =
76.06) and (b, bottom) benzen& (= 4;a=b = 7.317 A,c =
7.363 Ao = 8 = 101.50, y = 90.30).

difficult problem that arises when the number of molecules in
the unit cell, and consequently the number of variables, is
doubled.

To demonstrate the high performance of the DEM and the
DSM, 500 randomly started local minimizations were carried
out for § with six molecules and for s with eight molecules
without using any deformation of the potential function. None
of them reached a structure with energy close to the global-
minimum structure, despite an enormous computational expense,
considerably greater than the computational costs of the DEM
and the DSM runs.

The excellent performance is due not only to the smoothing
transformations but also to the essential use of several trajec-
tories coupled with a mechanism (described in section 2) that
determines whether to maintain or to discard a structure at a
given transformation level.

based on the idea of using a smoothing transformation of the The results show that the AMBER potential which was used
original potential surface, and recovering the deepest minimato simulate the interactions between benzene molecules leads

of the original energy function by a reversing procedure when
the transformation is gradually removed. Both methods proved
to be extremely powerful, not only in solving problems that
are considered very difficdi? but also in solving the even more

to the experimentally observed crystal structures at low and high
pressures. The minimized experimental crystal structures of
benzene are the global-minima structures of the potential for
all pressures considered here. However, the potential that was
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TABLE 8: Parameters of Locally Minimized Structures of CgHg Crystals at 25 kbar?

Z  ad) b@A) cB) «o(deg) B(deg) y(deg) energy (kcal/mol) volume of unit cell #Anol) standard equivalence mafrix
4 3 7501 7501 7.766 72.00 108.00 89.00 —17.06 98.05 1 -1 0
-1 -1 0
-1 0 -1
2 6.091 8.366 8.366 79.00 100.71 79.29 —16.60 100.05
1 6.214 7.247 8971 90.00 90.00 90.00 —16.36 101.00

a Minimized experimental structure found by the DSM is shown with bold italic font, in a different, but equivalent, representation from the one
usually used; see section 6 and also footnotasdd. ° The structures in this table are listed as succesive lowest-energy local-minimum structures
(at 25 kbar); the number indicates the structure from Table 5 being minimized locally at 25 KbEne lattice vectors in the current line can be
expressed as linear combinations of the lattice vectors of the minimized experimental structure for benzene aiZ25 har< 5.258 A,b =
5.350 A,c =7.209 A,o. = 90.00, 8 = 104.74, y = 90.00), with the coefficients of the standard equivalence matrix; the minimized experimental
structure for benzene at 25 kbar reported in ref 14, where different potential parameters were used, agrees closely with the=ghave=(

5.424 A,b=5521 A,c=7.432 A,a = 90.00, 8 = 105.90, y = 90.00). ¢ For an example of how to show the agreement between the lattice
parameters of the equivalent structures, see Appendix A.

-13

Theory Center). The programs were parallelized on the fine
--0»-Z=4,n=1‘ . . .
—a- 724 2| grain level by using the IBM Message-Passing Interface,
24 n=,3} distributing the pairwise interactions in the function and gradient
computations among the processors:=80 processors were
usually used. The overhead in the parallel computations did
not exceed 20% for these numbers of processors.

An average CPU time for one randomly started local
minimization with the original (untransformed) potential was
3418 CPU seconds for six &olecules and about 7 CPU hours
for eight benzene molecules (all timings are reported as if the
computations were carried out on one processor); these averages
are calculated from the test of 500 randomly started local
minimizations, which did not reveal any structures energetically
close to the global minimum. The runs with the DEM or the
DSM consumed a CPU time equivalent to about 100 randomly
started local minimizations (with the undeformed potential) for
both hexasulfur and benzene molecules. A single local mini-
mization with the deformed potential costs up to 20 times less
than that with the original potential because the shape of the
deformed surface is simpler, and the minimization procedure
needs fewer iteration steps.

14

Energy [kcal/mol]

-18

10 15
Pressure [kbar]

20 25

Figure 4. Results for energy minimizations of crystals of benzene at
various pressures fa&¢ = 4 andn = 1, 2, and 3, respectively.

used for § molecules is not accurate enough to allow the proper
prediction, unless a number of lower-energy artifacts that could
probably not be observed are discarded on physical grounds.
Both methods can be applied to crystals consisting of any Appendix A
rigid molecule with a dipole moment equal to zero. A molecule
with a nonzero dipole moment may lead to a unit cell with a ~_AS @n example, we show how the parametersh(c, o, j,
nonzero dipole moment; however, the very definition of the V) Of the calculated unit cell of thes®rystal structur& = 3,
energy of a polar crystal is still uncle##2023 Consequently, "~ Of Table 4 agree with the lattice parameters of the
the definition of the energy of a crystal consisting of flexible, Minimized experimental structure (a lattice with three molecules
charged molecules is still under investigation. We are currently N & trigonal unit cell; the first structure in Table 6). The
using the DEM and the DSM to try to treat crystals of flexible  Cartesian coordinatesy( &, as, by, bz, bs, €1, ¢z, Cs) of the
molecules with dipole moments. Attempts are also being made [attice vectors can be calculated by using the following
to reduce the CPU time required by our algorithms (see section formulas: a = a, a = a; = 0; by = brcosy, b, = b-siny, bs
10). = 0; c% = ccosp, ¢ = (b-c-co§a — byecy)/by, c3 = (2 —
Since both methods have also been applied with considerable€t — C)*2 For the trigonal latticea = b = 10.816 A,c =
success in other global-optimization problems, unrelated to 3-765 A,c.=p = 90°, y = 12, and the Cartesian coordinates
crystal structure predictioH;4%42they seem to be well-suited ~Pecomeay = 10.816,a, = ag = 0.0000;b, = —5.4080,b, =

to a broad spectrum of very different applications in physical 9-3669,bs = 0.0000;c; = 0.0000,c; = 0.0000,c3 = 3.7650.
chemistry. Multiplying the matrix of these Cartesian coordinates by the

A great advantage of the DSM is the very simple way in Standard equivalence matrix from Table 4, a set of Cartesian
which it is applied, compared to the DEM. Instead of coordinates is obtained, which should be a representation of

complicated formulas for convolutions, spline techniques, etc., the lattice vectors of the structuze= 3, n = 3:
we use a simple algebraic formula (eq 2). At the same time, [1/3 2/3 2/3 [ 10.8160 0.0000 0.00d0
the behavior of the DSM is practically the same as that of the |1/3 —1/3  2/3|-|—5.4080 9.3669 0.00
DEM. This simplicity allows for immediate and straightforward _

application of the DSM to individual flexible molecules and to 213 113 =513 0.0000 0.0000 3.76

crystals of flexible molecules. 0.0000 6.2446 2.5100

5.4080 —3.1223 2.510

10. Computations

The computations were carried out in parallel on an IBM
SP2 cluster containing 512 nodes (at the Cornell University

5.4080 3.1223-6.2750
Indeed, the lengths of the resulting vectar$, c calculated
from these Cartesian coordinates are 6.7302, 6.7302, and 8.8527,
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respectively, and agree with the lengths in Tabl@4=(3,n =
3). Similarly, the anglesy, 3, y are: 86.38, 86.38, and
106.95 and agree with the angles in Table 4.
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