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Two methods of global minimization, the diffusion equation method and the distance scaling method, are
applied to predict the crystal structures of the hexasulfur and benzene molecules. No knowledge about the
systems other than the geometry of the molecules and the pairwise potentials is assumed; i.e., no assumptions
are made about the space groups, cell dimensions, or number of molecules in the unit cell. Both methods are
based on smoothing transformations of the original potential energy surface, which remove all insignificant
local minima; the surviving minima are traced back to the original potential energy surface during the so-
called reversing procedure, in which the transformations are gradually removed. The crystal structures, known
from experiment, were predicted correctly. To verify the power of the methods, the problem of global
minimization of the potential energy of crystals of both molecules was intentionally increased considerably
in complexity: viz., the numbers of molecules in the unit cell were doubled (from three to six in the case of
hexasulfur and from four to eight in the case of benzene), and the search for the global minimum was repeated;
the method again located the global minimum for each molecule. Additionally, local minimizations starting
from the lowest-energy structures were carried out with a pressure term included, leading to the observed
high-pressure structure of benzene.

1. Introduction

The theoretical prediction of a crystal structure from a
knowledge of only the structures of its constituent molecules
has been thought to be an extremely difficult, if not an
unsolvable, problem.1-3 In general, the thermodynamically most
stable structure should be located as the correct structure
prediction; i.e., the structure with the lowest free energy should
be identified. Since this is computationally impractical, a
common simplification is to look for the global minimum of
the potential energy. Despite many efforts,4-15 the latter
problem remains unresolved, or only partially resolved. The
main obstacles in locating the most stable (global-minimum)
crystal structure are the existence of numerous local minima of
the potential energy of a structure and the high dimensionality
of the potential energy surface (when no knowledge of space-
group symmetry is assumed). Other serious obstacles include
the large number of interatomic interactions that must be
considered in the energy computations, the necessity to use the
Ewald summation to calculate the electrostatic energy,16-18 and
the problem of the very definition of the energy of a crystal
when the dipole moment of the unit cell is nonzero.19-23

The choice of the intermolecular potential also involves a
difficult decision. There are many possible potential functions,
differing in parametrization and in the shape of the potential
energy function, described in the literature.24 The choice of
the potential in the case of crystal calculations is critical,3,15,24,25

and a very sophisticated one, for example, one involving a

distributed multipole analysis including electrostatic anisotropy,
should perhaps be used for the best reproduction of experimental
results.25 However, in many computer simulations involving a
large number of energy and gradient calculations, it is necessary
to use a simpler but less expensive potential function, from the
computational point of view. Reasonably good results in the
description of crystal structures may also be obtained by
expressing the nonbonded part of the potential in the Lennard-
Jones 6-12 or Buckingham 6-exp forms, with electrostatic
interactions represented as Coulombic interactions between point
charges;15,24,26 also, a simpler 6-exp potential without any
electrostatic term may be used for a good description of lattice
energies.27,28 However, by using an improper potential, it can
be expected that one might obtain artificial, nonobservable
structures as minima of such a potential, that differences in
energy between different structures may be very small,15 and
that even the energetic order of the resulting structures may
differ.15 Thus, effective methods of global optimization for
crystal structures to locate low-energy structures can be used
as an important tool for developing and parametrizing force
fields. In the present paper, we use a Lennard-Jones 6-12
potential for hexasulfur29,30 and the AMBER31 potential for
benzene molecules. These potentials have very simple func-
tional forms, and they reproduce the experimental crystal
structures satisfactorily; therefore, despite some inherent prob-
lems in them (e.g., they may not give the correct lattice energy),
they were selected for this work.

One of the common simplifications of the theoretical crystal
structure prediction problem is the use of space-group
information,3,13-15,32-34 which greatly reduces the number of
variables. Another simplification is the introduction of informa-
tion about the unit cell dimensions.35,36 To the best of our
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knowledge, ref 12 is the only work that does not use any such
simplifications for theoretical crystal predictions. The Monte
Carlo technique implemented in the MPA program of Williams12

was used there to predict the crystal structures of benzene and
urea, including the prediction of the space group symmetry and
the numberZ of molecules in the unit cell (calculations were
carried out for 2 and 4 molecules in the unit cell, which
correspond to 15 and 27 degrees of freedom, respectively, for
both benzene and urea).
In the approach presented here, no knowledge about the unit

cell or space-group symmetry is assumed; i.e., all molecules in
the unit cell are allowed to move freely and independently as
rigid bodies; only the geometry of the rigid molecules and the
parameters of the pairwise interatomic potentials are taken as
known. Since no space-group symmetry is assumed, the number
of moleculesZ in the unit cell and their relative positions must
be predicted together with the cell parameters. Consequently,
a global-optimization algorithm is applied for each reasonable
number of molecules in the unit cell; the structure and the
number of molecules corresponding to the lowest energy per
molecule are predicted. To ensure that the method did not miss
any important minima, and to test the power of the method, an
additionalindependentglobal-minimum search is then carried
out with twice as many molecules. If this additional search
leads to the same structure as the previously computed lowest-
energy one (represented by a superlattice with a unit cell twice
as large as the predicted unit cell), then the predicted structure
and the predicted value ofZ are accepted. This additional search
is a global optimization problem considerably more complex
than the original one used for predicting the structure; in the
case of benzene, for whichZ ) 4, this additional search was
carried out with 8 molecules, which corresponds to 51 degrees
of freedom. To our knowledge, there have been no previous
attempts at global optimization of crystal systems with this
complexity. The computational expense of one global mini-
mization with a given number of molecules is equivalent to
about 100 randomly started local minimizations of the original
potential energy.
Multitrajectory versions of the diffusion equation method

(DEM)37-41 and of the distance scaling method (DSM)42,43are
applied in this work for the crystal structure prediction. In both
methods, the multidimensional potential energy surface is
smoothed until only a few potential wells, the traces of the
deepest minima of the original potential, remain. Those deepest
minima are then recovered during the so-called reversing
procedure, in which the deformation is gradually removed, and
the predicted crystal structure is taken as the minimum with
the lowest energy. Although the DEM and the DSM are applied
here to pairwise potentials, they may also be used with
multibody potentials, but this would require additional consid-
erations.
Both methods are similar in that they are based on a

consideration of trajectories of local minima that start from the
minima on a highly deformed potential surface and are tracked
back to the undeformed surface during the so-called reversing
procedure. The lowest-energy local minima of the undeformed
potential are among those obtained in that manner.
There are, however, some important differences between the

two methods. In the DEM, the physical nature of the diffusion
process leads to the smoothing of the potential surface; only a
few local minima survive for strong deformations, and those
minima are related to the lowest minima of the original potential.
Mathematically, the smoothing arises from the convolution
formula for the solution of the diffusion equation (eq 3), with

the initial condition for solving the diffusion equation being
the identification of the deformed surface at time zero with the
complete undeformed surface.
In the case of the DSM, the smoothing of the potential energy

surface is a result of deformation of the pairwise terms of which
the complete energy function is constituted. The lowest local
minimum of each pairwise potential is preserved while higher
local minima are removed, and high-energy barriers are lowered;
consequently, the potential energy surface becomes smoother
and possesses fewer local minima.
Both methods were applied to predict the crystal structures

of the S6 molecule with the number of molecules in the unit
cell ranging from one to six and of the benzene molecule, with
one, two, three, four and eight molecules. In the case of S6,
both methods located the energy-minimized experimental
structure in every computation. In addition, several artifacts
with slightly lower energies were found in the computations
with three, five, or six molecules. The term “artifact” is used
here to designate a minimum-energy structure that probably
cannot be observed experimentally, as described in Section 8.
The results for S6 molecules suggest that the globally minimized
results may be used as a basis for verification of intermolecular
force fields. In the case of benzene, the minimized experimental
structure was found in the computations with four molecules
and with eight molecules, and no lower-energy structures were
located; also, no lower-energy structures were found in the
computations with one, two, or three molecules at atmospheric
pressure, supporting the prediction ofZ ) 4 as the correct one.
Compared to our earlier work,41 the DEM has been extended

to include the treatment of electrostatic interactions; in addition,
for nonbonded interactions, the Gaussian approximation38,41of
the transformed Lennard-Jones potential was replaced by a cubic
spline approximation, which is more accurate, and 3-4 times
less expensive computationally. For this reason, the computa-
tions for S6 molecules were repeated, and the results are even
better than in the earlier paper:41 three previously missed
structures of very low energy (lower than the energy of the
minimized experimental structure) were now found in the
computations with six molecules.
The DSM was applied successfully in previous work42 to

predict the global-minimum arrangements of argon clusters (a
predecessor of the DSM, the shift method,44,45 also correctly
located the lowest-minimum structures of water clusters). The
current work, the theoretical prediction of the crystal structures
of the hexasulfur and benzene molecules, shows that the DSM
is at least as suitable as the DEM for this problem. Moreover,
the great advantage of the DSM is that it is easier to apply than
the DEM.

2. Methods

The energy surface of the original potential functionf(u), u
being a point in the multidimensional domain, usually possesses
a number of local minima that grows exponentially with the
dimension of the problem. The reason for applying the DEM
or the DSM is to smooth this surface, to be able to use any
standard local minimization procedure to locate the few local
minima that survive in the deformed surface, and to trace them
back to the deepest minima of the original potential function
by using the so-called “reversing procedure”. The position of
a surviving local minimum in the deformed surface depends
on the magnitude of the deformation, and, usually, differs from
the position of this minimum in the undeformed surface. Thus,
the goal of the reversing procedure is to recover the trajectory
connecting all the positions of this minimum.
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In the case of the DEM, the functionf(u) is treated as the
initial condition for solving the diffusion equation, and the
smoothed functionF(u, t) is the solution of this equation, with
t interpreted as time:

For a sufficiently large timeT, referred to as the maximum-
deformation time, the functionF(u, T) has only a few local
minima, which can easily be located by any strategy for global
minimization, such as energy minimization or Monte Carlo with
local minimization (MCM).46,47

In the case of the DSM, the transformation has a very simple
algebraic form; it is the original formula, with the atom-atom
distancer replaced byr′, where

R is the deformation parameter, andr0 is the minimum position
for the pairwise interaction. Then, the transformed Lennard-
Jones potential has the formε[(r0/r′)12 - 2(r0/r′)6], and the total
transformed Lennard-Jones energy,ULJ, is a sum of all such
pairwise interactions. As follows from eq 2, the basin of the
local minimum in the pairwise interaction increases with the
parameterR, and consequently, the complete function,ULJ,
becomes smoother. Hence, the DSM deformation leads to a
Lennard-Jones potential energy surface with only a few local
minima for larger values ofR, as in the case of the DEM. By
contrast, however, to the DEM, where the system usually
expands significantly for larger values of time, the size of the
structures corresponding to the local minima for the DSM-
transformed Lennard-Jones potential remains similar to the
original size with the undeformed potential. Since the electro-
static interaction is always accompanied by a 6-12 Lennard-
Jones one, the same mathematical formula (eq 2) is used for
the transformation ofr in the term 1/r as for the Lennard-Jones
term.
Each of the local-minimum configurations for large deforma-

tions can then be traced back through the reversing procedure
in which the deformation parameter is decreased in steps, i.e.,
the successive energy surfaces are closer to the original energy
surface. Local minimizations at each step start from the local
minima of the previous step or from perturbations of those
minima. Gay’s routine SUMSL,48 a secant-type unconstrained
minimization solver, was used for all local minimizations.
Before the reversing procedure starts, a search consisting of

100 local minimizations, starting from randomly generated
points on the maximally deformed potential energy surface, is
carried out. Because the number of minima for a highly
deformed potential function is significantly less than the number
of minima for an undeformed function, this search is highly
effective and leads only to a few local minima. In addition, a
local minimization on a highly deformed surface is 2-5 times
faster than one carried out for an undeformed function. The
reversing procedure applied in the present work was a multi-
trajectory one; i.e., more than one local minimum from the
maximally deformed surface was tracked back in the deforma-
tion to the undeformed surface. The number of minima tracked
back was chosen as 8, and therefore, up to 8 of the lowest-
energy minima resulting from 100 local minimizations were
chosen for the reversing procedure. The reversing procedure

consists of consecutive steps, each of them carried out at a
different deformation parameter, so that the deformation pa-
rameter in the step is smaller than that in the previous step.
Each reversing procedure step begins with local minimizations
of up to eight of the lowest-energy structures found at the
previous step. The number of resulting local minima is not
greater than eight and may be less because different minima
from the previous step may merge while changing the deforma-
tion parameter. Then, for each resulting local minimum, three
random perturbations were carried out, in which all variables
for a given structure (including lattice vectors) were changed
randomly in the range of 20% of the original value, and the
perturbed structures were minimized, producing up to 24
different minima. At the end of this step, there were up to 32
local minima, from which up to 8 lowest-energy structures were
chosen for the next reversing-procedure step. Before the next
step starts, the deformation parameter is decreased. For the
DEM, the deformation parameter (diffusion time) changes
according to a logarithmic scale, each time being divided by 2,
and the reversing procedure is terminated when the deformation
reaches the value of 10-8. For the DSM, the deformation
parameter changes linearly by decreasing it by 0.03 in each
deformation step, and the reversing procedure ends when the
deformation is equal to 0. There were no perturbations carried
out for the undeformed function; only local minimizations were
carried out, and the predicted crystal structure (including the
value ofZ) was taken as the one of lowest energy.
The value of the maximum-deformation timeT in the DEM

does not influence the result significantly ifT is chosen large
enough. Values ofT ranging from 0.5 to 5.0 were examined
and led to the same global minimum. In the crystal calculations,
a change in the deformation parametert results in changes in
the energy and in the volume of the unit cell of each particular
structure; for small values oft these changes occur rapidly with
increasingt, whereas for larger values oft the energy and the
volume of the unit cell stabilize. This value of timet is chosen
as the maximum-deformation timeT; in the present paper, the
value ofT was chosen as 1.0.
Similarly, the choice of the maximum-deformation parameter

Rmax in the DSM is not crucial; the results remain unchanged if
this parameter is large enough; above a certain value ofR,
changes in the local-minima structures and their energies become
small, and this value ofR is chosen asRmax. TheRmaxparameter
has been determined to be 0.3 for the hexasulfur and benzene
computations.

3. The DEM Applied to Crystals of Rigid Molecules

As opposed to the DSM, whose application is straightforward,
the implementation of the DEM requires a solution of eq 1.
This can be done if the multidimensional Fourier-Poisson
integral (the convolution of the functionf, and a Gaussian-type
function whose width depends on timet)

can be evaluated within a reasonable computer time, wherem
is the number of variables andv is the integration variable; the
computation of the integral in eq 3 is described in the present
section.
3.1. Tetrahedra as a Tool for Solving the Diffusion

Equation. The application of the DEM in its rigorous original
formulation would require that the diffusion equation be solved
in the independent variables of the crystal energy function (the
six parametersa, b, c, R, â, γ of the unit cell, three Eulerian

∆uF(u, t) ) ∂

∂t
F(u, t) (1)

F(u, 0) ) f(u)

r′ )
r + r0R
1+ R

(2)

F(u, t) ) (2xπt)-m∫Rm f(v) exp(-||u - v||2/4t) dv (3)
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angles per molecule defining the relative orientation of the
molecule with respect to the unit cell, and three translations for
all molecules but one; the latter is a translationally fixed
reference, removing the three translational degrees of freedom
of the entire system). However, the Cartesian coordinates of
the atoms belonging to the system, and, consequently, the
interatomic distances and the energy, are very complicated
functions of these variables. Since it is practically impossible
to solve the diffusion equation in such variables, we have
adopted another approach. The lattice vectorsa, b, c are defined
by nine Cartesian coordinates; the position of the center of mass
and the orientation of each of the moleculesM1, M2, ...,MZ in
the unit cell are defined by the Cartesian coordinates of the
vertexes of an auxiliary regular tetrahedron associated with each
particular molecule in the unit cell. For the moleculeMi, i )
1, 2, ...,Z, the associated regular tetrahedron∆i has a given
size, the same for each molecule, with its center at the center
of mass ofMi. Moreover, the vertexes of the tetrahedron∆i

are treated as virtual atoms of the moleculeMi, so that they
and the real atoms ofMi constitute a rigid structure. The
position of any atom of the moleculeMi is a unique weighted
sum of the positions of the vertexes of the tetrahedron∆i, and
the weights of the sum remain constant even if the molecule is
translated or rotated. Hence, the Cartesianx, y, z-coordinates
of any atom of the moleculeMi in the unit cell are linear
combinations of the Cartesianx, y, z-coordinates, respectively,
of the vertexes of the tetrahedron∆i, with the constant
coefficients of these linear combinations being the weights, the
same for thex, y, andz-coordinates. Consequently, the Cartesian
x, y, z-coordinates of an atom belonging to a moleculeMi(na,
nb, nc) (a translational image ofMi by the vectornaa + nbb +
ncc), for any i ) 1, 2, ...,Z and any integer numbersna, nb, nc,
are linear combinations of thex, y, z-coordinates of the vertexes
of the tetrahedron∆i and thex, y, z-coordinates of the vectors
a, b, c. Obviously, to maintain the shape of the molecule, the
Cartesian coordinates of the vertexes of the tetrahedron must
be correlated so that the vertexes constitute a regular tetrahedron
of a given size.
At this point, we allow the Cartesian coordinates of the

vertexes of tetrahedra∆1, ∆2, ...,∆Z to assume any real values;
i.e., we allow violations of the initially imposed constraints
(regularity and size of the tetrahedra). The positions of all
atoms, however, are calculated by using the same linear
combinations as earlier, with the same unchanged coefficients.
Consequently, if the constraints imposed on the tetrahedra are
violated, the shapes of the corresponding molecules change. We
treat all the Cartesian coordinates of the vertexes of∆1, ∆2, ...,
∆Z and all the Cartesian coordinates of the vectorsa, b, c, as
independent variables.
The total number of independent variables with 4 vertexes

of each tetrahedron and 3 lattice vectors equals 12Z + 9, and
the physically acceptable geometries correspond to those points
of R12Z+9 that satisfy the regularity and size constraints for
tetrahedra∆1, ∆2, ...,∆Z. These points constitute a (6Z + 9)-
dimensionalsubmanifold(six external degrees of freedom per
tetrahedron and three lattice vectors) in the Cartesian (12Z +
9)-dimensional space.
To compensate for the violations of the imposed constraints,

we solve the diffusion equation inR12Z+9 and observe its solution
and carry out the reversing procedure and local minimizations
on a (6Z + 3)-dimensional submanifold corresponding to the
physically acceptable geometries, with the six degrees of
freedom of the entire system being eliminated.
The great advantage of choosing the Cartesian coordinates

of the vertexes of∆1, ∆2, ...,∆Z and the Cartesian coordinates
of the vectorsa, b, c, as independent variables is that the
Cartesianx, y, z-coordinates of any atom of any molecule are
linear combinations of independent variables; this significantly
simplifies the problem of solving the diffusion equation, as
shown in the following subsection.
3.2. Interatomic Distances and Convolution.The original

potential energy function is a sum (over lattice cells, molecules,
and atoms) of pairwise contributions. Hence, according to eq
3, the solution of the diffusion equation is also a sum (over the
same cells, molecules, and atoms), but the pairwise contributions
are now the Fourier-Poisson integrals of pairwise terms
replacing the complete energy function. Each of the pairwise
terms is of the radial form (6-12 Lennard-Jones or electrostatic
interactions in this study). Consequently, by using the tetra-
hedron approach, we need to calculate the Fourier-Poisson
integrals over the Cartesian coordinates of the vertexes of only
two tetrahedra (those associated with the two molecules whose
atoms interact) and over the Cartesian coordinates of the lattice
vectorsa, b, c; in the situations in which an atom belonging to
a molecule in the unit cell interacts with a nonunit cell atom
belonging to a translational image of the same molecule, the
Cartesian coordinates of the vertexes of only one tetrahedron
and the vectorsa, b, c, are used.
To calculate a Fourier-Poisson integral of pairwise terms, it

is necessary to apply formulas for computing interatomic
distances. As mentioned in the previous subsection, thex, y,
z-coordinates of atom V of a moleculeMiV (na

V, nb
V, nc

V) can be
represented as the following linear combinations of independent
variables

where the coefficientsdj
V with the indicesj e 4 correspond to

the vertexes of tetrahedron∆iV (weights), whereasd5
V ) na,

d6
V ) nb, d7

V ) nc. The independent variablesx, y, z with
indicese4 are the Cartesian coordinates of the four vertexes
of ∆iV, and those with indicesg5 are the Cartesian coordinates
of the vectorsa, b, c (they do not have the superscript “V”
since they are the same independent variables for all atoms in
the system). If W is another atom of the system, the square of
the distance between V and W can be represented as

If iV * iW, then all thex, y, zvariables in eq 5 are independent
variables. If iV ) iW (i.e., V and W belong to translational
images of the same molecule), the variablesx1

V, x2
V, x3

V, x4
V

coincide with the variablesx1
W, x2

W, x3
W, x4

W, respectively, and
the same coincidence holds for the variablesy andz. In this
case

xV ) d1
Vx1

V + ...+ d4
Vx4

V + d5
Vx5 + ...+ d7

Vx7

yV ) d1
Vy1

V + ...+ d4
Vy4

V + d5
Vy5 + ...+ d7

Vy7 (4)

zV ) d1
Vz1

V + ...+ d4
Vz4

V + d5
Vz5 + ...+ d7

Vz7

dist2(V, W) ) [d1
Vx1

V - d1
Wx1

W + ...+ d4
Vx4

V - d4
Wx4

W +

(d5
V - d5

W)x5 + ...+ (d7
V - d7

W)x7]
2 + [d1

Vy1
V - d1

Wy1
W + ...+

d4
Vy4

V - d4
Wy4

W + (d5
V - d5

W)y5 + ...+ (d7
V - d7

W)y7]
2 +

[d1
Vz1

V - d1
Wz1

W + ...+ d4
Vz4

V - d4
Wz4

W + (d5
V - d5

W)z5 + ...+

(d7
V - d7

W)z7]
2 (5)
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where all thex, y, zvariables in eq 6 are independent variables.
Consequently, a pairwise interaction (of the original potential

function) has the formf(d1x1 + ... + dkxk, d1y1 + ... + dkyk,
d1z1 + ...+ dkzk), i.e., is a radial function of a linear combination
of k vectors inR3. The Fourier-Poisson integral for this
interaction is the convolution off and a product of 3k identical
normalized Gaussian-type functionsg, each in one of the
variablesx1, ...,xk, y1, ...,yk, z1, ...,zk; the width of the Gaussian
g is the same as the width of the Gaussian in eq 3 [defined by
the factor 1/(4t)]. It can be shown (ref 49, section 20) that this
convolution can be represented by a simpler formula

where

The functionsG(X), and likewiseG(Y), G(Z), are also normal-
ized Gaussian-type functions

wherete ) [4t(d1
2 + ... + dK

2)]1/2; te will be called the effective
time for a pairwise interaction. In other words, the 3k-
dimensional convolution is being replaced by a 3-dimensional
convolution of the functionf(X, Y, Z) with a Gaussian-type
functionG(X) G(Y) G(Z) where the width ofG depends on the
time t and also on the coefficientsdj of the linear combinations
associated with the pair of atoms in the pairwise interaction.
Since the functionf is radial, the three-dimensional convolution
can easily be reduced to a one-dimensional convolution by using
spherical coordinates in the calculation of the convolution in
eq 7.
3.3. One-Dimensional Convolutions with Gaussian-Type

Functions. The 6-12 Lennard-Jones contribution in a pairwise
interaction leads to one-dimensional convolutions of the func-
tions 1/r5 and 1/r11 with a Gaussian (the change in the power
of r is due to the substitution of spherical coordinates for the
spatialx, y, z-coordinates in the calculations of the convolution
in eq 7 for the Lennard-Jones term, which introduces a
multiplication by the Jacobian of this substitution). These
functions are not locally integrable in the neighborhood ofr )
0 (i.e., the area of the region restricted by the functions 1/r5 or
1/r11 and both axes of a two-dimensional coordinate system is
infinite in any neighborhood of zero distance); hence, to apply
the DEM, the Lennard-Jones functions have to be redefined for
small interatomic distances so that they are bounded functions.
The corresponding one-dimensional functions convolved with
a Gaussian-type function cannot be represented by an analytical
formula. For this reason, approximations of the convolutions
are used. Previously,38,40a sum of two Gaussian-type functions
was used to approximate the Lennard-Jones potential; this led

to analytical formulas for the one-dimensional convolutions.
However, in the case of crystal structures, where high accuracy
is required for both small and large interatomic distances, it
was necessary to use as many as six Gaussian-type terms,41

which was computationally expensive. In the current work, the
one-dimensional convolutions are represented by cubic splines,
as shown below.
First, 2000 points on the positive axis are chosen:pi ) p0qi,

for i ) 1, 2, ..., 2000, whereq100 ) 2 (the significance of this
equality will be explained later), andp0 ) 0.1. Then, the
functions 1/r5 and 1/r11 are redefined to constant values equal
to 1/p05 and 1/p0,11 respectively, forr < p0; i.e., the assigned
functions are bounded functions. Each of these functions is
then approximated by linear functions in all intervals (pi-1, pi)
for i ) 1, 2, ..., 2000; the new function is continuous, but its
first derivative is not continuous at the pointspi. It is then
convolved with the Gaussian (1/xπ) exp(-r2), by calculating
analytically and summing up all the convolutions of the linear
approximations in the intervals (pi-1, pi) with the Gaussian. The
resulting functions (one for 1/r5 and one for 1/r11) are continuous
functions, and now all the derivatives are continuous (ref 49
section 15). These two functions are then approximated by
cubic splines50 based on the values of the functions at the points
pi, i ) 0, 1, 2, ..., 2000, and their coefficients are precalculated.
The two cubic splines are then used to evaluate the Lennard-
Jones function transformed according to the diffusion equation
method, by calculating the cubic splines for 1/r5 and 1/r11 for
the variableR ) r/(4te)1/2 (te being the effective time for a
pairwise interaction defined in subsection 3.2) and by dividing
them byr[(4te)1/2]5 and r[(4te)1/2]11, respectively.
To avoid the expensive computations of the square root of

the squared distance between two atoms, the actual computations
are carried out for the squared variableR2 in terms of the
polynomiala3R6 + a2R4 + a1R2 + a0, whose coefficients depend
on the indexi of the interval (pi-1, pi) such thatpi-1

2 < R2 e

pi
2. Thepi’s for the cubic spline form a geometric series; this
choice of thepi’s was made to be able to achieve high accuracy
of the spline approximation for all distances, including very
small and very large ones, with a small amount of precalculated
coefficients. A straightforward way to locate the index would
involve an expensive computation of the logarithm ofR2;
instead, the binary computer representation of numbers is
exploited by utilizing the fact thatq100 ) 2.
This approach saves about 70-80% of the computer time

compared to the six-term Gaussian approximation. The spline
approximation is accurate for distances larger than the local
minimum distance of the transformed Lennard-Jones potential
and is satisfactory for all distances that have a chance of being
reached during local minimizations.
The electrostatic term also attains an infinite value for zero

distance; however, the function 1/r is a locally integrable
function inR3. Hence, in contrast to the Lennard-Jones potential
function, it can be treated explicitly without being redefined in
the neighborhood ofr ) 0. The one-dimensional convolution
used to calculate the transformed electrostatic term is propor-
tional to a convolution of the function sign(r) and a Gaussian,
which is represented analytically by a function erf(r/8te)/r, where
te is the effective time; i.e., after transformation by the Fourier-
Poisson integral, 1/r becomes erf(r/8te)/r.

4. Lattice Summation

A precise calculation of the energy of a crystal involves an
infinite number of terms. In practical computations, a distance
cutoff must be applied for the interactions between the atoms

dist2(V, W) ) [(d1
V - d1

W)x1
V + ...+ (d4

V - d4
W)x4

V +

(d5
V - d5

W)x5 + ...+ (d7
V - d7

W)x7]
2 + [(d1

V - d1
W)y1

V + ...+

(d4
V - d4

W)y4
V + (d5

V - d5
W)y5 + ...+ (d7

V - d7
W)y7]

2 +

[(d1
V - d1

W)z1
V + ...+ (d4

V - d4
W)z4

V + (d5
V - d5

W)z5 + ...+

(d7
V - d7

W)z7]
2 (6)

f(X, Y, Z)* [G(X) G(Y) G(Z)](d1x1 + ...+ dkxk, d1y1 + ...+
dkyk, d1z1 + ...+ dkzk) (7)

G(X) ) (gd1* ...*gdk)(X) and gdj(ê) )
g(ê/|dj|)
|dj|

(8)

G(X) ) 1

texπ
exp(- X

te)
2

(9)
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in the unit cell and the non-unit-cell atoms. In this work, this
is done by carrying out the lattice summations for only several
layers of lattice cells surrounding the unit cell (usually 2-5
layers are realistic from the point of view of the computational
time). However, to achieve reasonable accuracy (about 99%
or more), the pairwise interactions must be functions that
converge fast enough to zero for large distances. Moreover,
since the same crystal lattice can be represented equivalently
by different unit cells, a cell chosen for the computations should
have a shape that is close to a cube; cells that are long in one
direction and thin in another would require more layers in the
computations to give the same accuracy. A practical way to
achieve a high accuracy is to use the reduced cell based on the
three shortest noncoplanar vectors connecting the points of the
computed lattice.
The DEM- and the DSM-transformed Lennard-Jones and

electrostatic interactions exhibit the same asymptotical behavior
for large distances as the original interactions, i.e., the order of
convergence to zero is 1/r6 for the transformed Lennard-Jones
interactions and 1/r for the transformed electrostatic interactions.
The Lennard-Jones contribution can be calculated in a straight-
forward way, as opposed to the electrostatic contribution,
because of the very slow convergence of the function 1/r to
zero. Therefore, the Ewald method16-18 is usually used to
calculate the electrostatic energy of a crystal, both when the
molecule has a dipole moment and when it does not have
one.29,30

The Ewald method is based on the use of the Fourier
transformation and the Parseval formula (ref 49, section 17).
The electrostatic energy is calculated as

where

The prime overM (the number of atoms in the unit cell) denotes
that i * j if na, nb, nc ) 0, i.e., if the atomsi andj lie in the unit
cell. V is the volume of the original unit cell,r i andr j are the
Cartesian coordinates of atomsi andj, respectively, in the unit
cell,qi andqj are the respective charges,ri,j,na,nb,nc is the distance
from atomi in the unit cell to the image of atomj in the cell
na, nb, nc, m is the linear combination of reciprocal vectorsã,
b̃, c̃ with ma, mb, mc as coefficients; the parameterR is chosen
to ensure the fastest convergence of the sums in eq 11 by
estimating the maximum errors in the computations ofEd and
Er from eq 11, for a given size of the unit cell and for a number
of values ofR. In the case in which rigid molecules are
considered, the intramolecular interactions of the molecules in
the unit cell are not included.
To apply the Ewald method to the DEM-transformed

electrostatic potential, erf(r/8te)/r, the latter is represented as

1/r - (1/r) erfc(r/8te). The term (1/r) erfc(r/8te) converges
rapidly to zero for large distances and can be calculated directly
as is the Lennard-Jones function. The term 1/r is calculated
using the standard Ewald method. All the summations over
the real and over the reciprocal lattices are carried out by
summing up over layers of unit cells or reciprocal unit cells,
respectively.
Similarly, in the case of the DSM, the function (1+ R)/r

must be subtracted from the transformed pairwise potential
(1 + R)/(r + r0R) and added later as a separate term. The
resulting difference of the functions converges to zero as the
function 1/r2. Hence, when the charges in each unit cell sum
to zero, the interactions between such unit cells exhibit a 1/F4
asymptotic behavior, whereF is the distance between the centers
of the interacting unit cells. The function 1/F4 is unconditionally
convergent inR3, and consequently, the difference of the
functions can be treated directly in the real lattice summation,
whereas the standard Ewald16-18 method is applied for the
remaining (1+ R)/r term.

5. Applications
Both methods are applied to predict the crystal structures of

S6 and benzene molecules. The molecules are assumed to be
rigid. The sulfur atoms of different S6 molecules interact
according to a 6-12 Lennard-Jones potential. In the case of
benzene, both 6-12 Lennard-Jones and Coulombic contributions
are present (even though benzene has no dipole moment, the C
and H atoms carry partial charges). The parameters of the
potentials for hexasulfur29,30and benzene31 (AMBER force field)
are presented in Table 1. The length of the S-S bond in the
hexasulfur molecule is equal to 2.057 Å, and consecutive bonds
make an angle of 102.18°. The geometry of the benzene
molecule was taken from AMBER;31 the C-C and C-H bonds
have lengths of 1.400 Å and 1.080 Å, respectively, and the bond
angles are 120°.
The methods are applied with different values for the number

of molecules in the unit cell. Since there is no a priori
knowledge aboutZ, its value is also a result of the computations,
so thatZ is also a predicted value, for which the global minimum
of the energy per molecule is the smallest.
When the potentials adopted here are used to minimize the

energies of the experimental structures of the hexasulfur and
benzene crystals, slight deviations are observed. Therefore, the
target structures for the crystals studied here are those that result
from a minimization of the experimental crystal structures (see
footnotea in Tables 2-5).

6. Results and Discussion
The results of the application of the DEM and the DSM to

hexasulfur and benzene molecules are presented in Tables 2-5.
Since the computations with different numbers of molecules
frequently lead to superlattices and sublattices of the same
crystal structure, the tables include “standard equivalence
matrixes”, which define transformations from one realization
to another. A detailed explanation of the use of the standard
equivalence matrices is presented in Appendix A. The con-
ventional lattices corresponding to the calculated structures along
with their probable space-group symmetry are listed in Tables

TABLE 1: Parameters of Potential Functionsa

atom type ε (kcal/mol) r0 (Å) q (electronic charge units)

S 0.805 3.66 0.00
C 0.120 3.70 -0.15
H 0.010 3.08 0.15

a For the Lennard-Jones potential,ELJ ) ε[(r0/r)12 - 2(r0/r)6], and
for the electrostatic energyEel ) 332.09q1q2/r in kcal/mol.

Eel ) Ed + Er + Ec (10)

Ed )
1

2
∑
i,j

M′

∑
na,nb,nc

qiqj

erfc(Rri,j,na,nb,nc)

ri,j,na,nb,nc

Er )
1

2πV
∑

(ma,mb,mc)*(0,0,0)

exp(-(πm/R)2)

m2
×

{[∑
i)1

M

qi cos(2πm‚r i)]
2 + [∑

i)1

M

qi sin(2πm‚r i)]
2}

Ec )
-R

xπ
∑
i)1

M

qi
2 (11)
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6 and 7 for hexasulfur and benzene, respectively; the standard
equivalence matrices in Tables 2-5 show how the calculated
lattices are derived from the corresponding conventional lattices.
Sulfur-6 crystallizes in the rhombohedral space groupR3h,

with one molecule in the unit cell, whose lattice parameters51

are a′ ) 6.407 Å andR′ ) 115.19°. After energy minimization,
these values become41 a′ ) 6.370 Å andR′ ) 116.22°. This
minimized structure can also be represented as a crystal with
three molecules in a trigonal unit cell41 (the first,R3h, structure
in Table 6).
Without assuming any of this information, the DEM algorithm

was carried out with three and with six molecules of S6.
Previously, the minimized experimental structure was found as
the lowest-energy structure with one, two, four, or five
molecules;41 with three molecules, a lower energy artifact was
found,41 but this was not found with six molecules. For this
reason, we repeated the computations only with three and six
molecules using the new, more accurate approximation of the
transformed Lennard-Jones potential function with cubic splines
(see section 3.3). With three molecules, the DEM located the
structure (shown in bold italic font in Table 2), which is

equivalent to the trigonal unit cell of the minimized experimental
structure; in addition, the method located two lower-energy
artifacts. The artifact with the lowest energy (see Table 2,Z)
3, n) 1) had been found41 previously. With six molecules the
problem of global minimization becomes very challenging, but
the DEM found a superlattice of the lowest-energy artifact41 (Z
) 3, n ) 1) as the lowest-energy minimum. As in the earlier
work,41 the minimized experimental structure (as a duplication
of Z ) 3, n ) 3) was found; a duplication of another low-
energy artifact (Z ) 3, n ) 5) was also obtained. In addition,
two new low-energy structures (Z ) 6, n ) 2 andZ ) 6, n )
3), lower in energy than the minimized experimental one, were
located; they are also artifacts.
In general, the results for S6 molecules are a repetition of

our earlier results41 to a certain extent. Since our current
algorithm is much faster than its earlier version, it was possible
to increase the size of the perturbations in the reversing
procedure (see section 2); this sometimes results in an increase
in the number of iterations in the local minimizations and may
be more time-consuming. However, the modified DEM seems
to be even more powerful than its previous version,41 and the

TABLE 2: Parameters of Calculated Structures for S6 Crystals Using the DEMa

Z nb a (Å) b (Å) c (Å) R (deg) â (deg) γ (deg)
energy

(kcal/mol)

volume of
unit cell
(Å3/mol)

equivalence
indicatorc standard equivalence matrixd,e

3 1 5.588 8.493 8.614 95.47 103.30 104.27-46.04 126.84 1 0 0
0 1 0
0 0 1

2 5.560 8.528 8.558 95.83 103.42 101.79 -45.86 127.20 1 0 0
0 1 0
0 0 1

3 6.369 8.010 8.010 95.07 75.00 104.99 -45.81 127.08 2/3 1/3 -1/3
-1/3 1/3 -4/3
1/3 2/3 4/3

4 6.880 7.034 8.552 73.57 81.12 75.45 -45.73 127.57 1 0 0
0 1 0
0 0 1

5 6.889 7.000 8.497 75.30 81.73 76.07 -45.54 127.73 1 0 0
0 1 0
0 0 1

6 5.518 8.413 8.511 82.91 99.12 83.63 -45.41 127.90 1 0 0
0 1 0
0 0 1

7 6.725 6.998 8.554 101.84 96.70 77.34 -45.34 127.79 1 1 -1
-1 1 0
1 0 1

6 1 8.493 8.614 11.175 103.30 75.73 84.52-46.06 126.84 Z) 3,n) 1 0 1 0
0 0 -1

-2 0 0
2 8.499 8.598 10.884 88.81 74.79 84.08 -45.94 127.15 1 0 0

0 1 0
0 0 1

3 8.498 8.573 10.917 74.34 87.33 84.91 -45.90 127.11 1 0 0
0 1 0
0 0 1

4 6.369 10.774 11.451 101.90 86.29 97.10-45.82 127.08 Z) 3, n) 3 2/3 1/3 -1/3
-1/3 1/3 7/3

0 -1 1
5 7.820 10.935 11.106 119.34 109.10 90.19-45.61 127.77 -1/2 -1/2 -1

1 0 0
0 -1 1

6 8.497 8.558 10.940 89.06 104.65 95.26 -45.55 127.56 Z) 3,n) 5 0 0 -1
-1 1 0
1 1 0

aMinimized experimental structure found by the DEM is shown with bold italic font, in a different, but equivalent, representation from the one
usually used; see section 6 and also footnotesd ande. b The number of the successive lowest-energy local-minimum structure for givenZ. c Shows
equivalent unit cell with lowest possibleZ in the present Table.d The lattice vectors in the current line can be expressed as linear combinations of
the lattice vectors of the probable lattice (shown in Table 6) with the elements of the standard equivalence matrix; i.e, the product of the lattice
vectors from Table 6 and the standard matrix produces a set of lattice vectors whose parameters are very close to those in the current line.eFor
an example of how to show the agreement between the lattice parameters of the equivalent structures, see Appendix A.
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current application revealed the lowest-energy (artifact) with
six molecules, whereas the previous application reached only
the minimized experimental structure with this number of
molecules.
The DSM algorithm was applied with a number of S6

molecules ranging from one to six. With one, two, or four
molecules, the minimized experimental structure was found as
the lowest-energy structure. This structure was also found with
three molecules, together with two lower-energy artifacts, the
same as those located by the DEM. With six molecules, the
DSM found the same superlattice of the lowest-energy artifact
(see Table 4,Z ) 3, n ) 1) as the lowest-energy minimum,
and a superlattice of the minimized experimental crystal structure
(Z ) 3, n ) 3); the latter structure is the trigonal lattice
corresponding to the minimized experimental crystal structure
with one molecule (Z ) 1, n ) 1 in Table 4). In addition, the
method found two other artifacts, specific for six molecules (Z
) 6, n ) 2 andZ ) 6, n ) 3). With five molecules, the
minimized experimental structure was found as the third lowest-
energy structure, together with two artifacts (Z ) 5, n ) 1; Z

) 5, n) 2) of slightly lower energies, specific for this number
of molecules. As shown in Table 4, many of the low-energy
structures obtained with lower numbers of molecules are also
located with higher numbers of molecules, which strongly
indicates that the DSM reached all or almost all of the deepest
local minima of the potential.
As a prediction of the crystal structure, the lowest-energy

structure from Table 4 should be chosen provided that it is
physically realistic; when two structures have the same lowest
energy, the one of the smaller numbers of molecules should be
chosen. As Table 4 indicates, the lowest energy per molecule
is obtained with three molecules (Z ) 3, n ) 1) and with six
molecules (Z ) 6, n ) 1), and these represent the same lattice.
On this basis, the structureZ ) 3, n ) 1 should be chosen as
the prediction of the crystal structure. However, as discussed
in Section 8, this structure probably could not exist physically.
The minimized experimental structure is found as one of the
lowest- (but not the lowest-) energy structures of this potential.
The fact that so many artifacts were found by both global-energy
minimization methods shows how powerful these methods are.

TABLE 3: Parameters of Calculated Structures for C6H6 Crystals Using the DEMa

Z nb a (Å) b (Å) c (Å) R (deg) â (deg) γ (deg)
energy

(kcal/mol)

volume of
unit cell
(Å3/mol)

equivalence
indicatorc standard equivalence matrixd,e

1 1 4.860 4.860 4.860 93.49 93.49 86.52 -11.91 114.21 -1/3 1/3 1/3
2/3 1/3 1/3
1/3 2/3 -1/3

2 5.199 5.199 5.255 77.84 102.16 64.27 -11.73 117.49 1/2 1/2 0
-1/2 1/2 0

0 0 1

2 1 5.511 6.264 6.751 90.00 90.00 73.12 -13.78 111.50 -1 0 0
-1 0 -1
0 -1 0

2 5.421 5.496 7.641 90.00 74.07 90.00 -13.51 109.47 1 0 0
0 -1 0
0 0 -1

3 5.487 6.374 7.163 90.00 90.00 64.52 -12.63 113.08 1 0 0
0 0 -1
0 1 0

3 1 5.412 9.190 9.190 63.76 101.32 78.68 -12.74 126.88 0 0 -1
-1/3 1/3 -1/3
1/3 2/3 1/3

2 5.355 6.283 10.674 81.69 89.74 71.98 -12.71 112.53 1 0 0
0 1 0
0 0 1

3 5.412 5.416 11.901 89.21 81.05 87.22 -12.67 114.72 1 0 0
0 1 0
0 0 1

4 1 6.605 7.431 9.167 90.00 90.00 90.00 -13.88 112.49 0 0 1
1 0 0
0 1 0

2 6.265 8.714 8.714 101.55 100.58 100.58-13.79 111.50 Z) 2,n) 1 -1 0 -1
1 1 0
1 -1 0

3 7.719 7.719 8.065 73.18 106.82 89.21 -13.51 109.47 Z) 2,n) 2 -1 -1 0
1 -1 0
1 0 1

8 1 7.432 11.298 11.298 71.53 90.00 90.00-13.88 112.48 Z) 4, n) 1 -1 0 0
0 1 1
0 1 -1

2 9.753 9.753 11.021 112.23 112.23 87.62-13.79 111.50 Z) 2,n) 1 0 1 1
0 -1 1
2 0 0

aMinimized experimental structure found by the DEM is shown with bold italic font, in a different, but equivalent, representation from the one
usually used; see Section 6 and also footnotesd ande. b The number of the successive lowest-energy local-minimum structure for givenZ. c Shows
equivalent unit cell with lowest possibleZ in the present table.d The lattice vectors in the current line can be expressed as linear combinations of
the lattice vectors of the probable lattice (shown in Table 7) with the elements of the standard equivalence matrix; i.e, the product of the lattice
vectors from Table 7 and the standard matrix produces a set of lattice vectors whose parameters are very close to those in the current line.eFor
an example of how to show the agreement between the lattice parameters of the equivalent structures, see Appendix A.
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TABLE 4: Parameters of Calculated Structures for S6 Crystals Using the DSMa

Z nb a (Å) b (Å) c (Å) R (deg) â (deg) γ (deg)
energy

(kcal/mol)

volume of
unit cell
(Å3/mol)

equivalence
indicatorc standard equivalence matrixd,e

1 1 3.765 6.369 6.370 116.23 101.34 101.34-45.79 127.10 0 0 -1
-1/3 -2/3 1/3
-1/3 1/3 1/3

2 3.769 6.362 6.362 117.75 106.17 73.83 -45.62 127.67 0 0 1
-1/2 -1/2 0
1/2 -1/2 0

3 4.189 5.705 6.182 67.67 70.36 88.65 -45.31 127.80 1 0 0
0 1 0
0 0 1

4 4.990 4.990 5.603 105.62 105.62 83.27 -44.72 129.22 1/2 -1/2 0
1/2 1/2 0
0 0 1

2 1 6.369 6.369 7.526 101.36 78.64 63.78 -45.80 127.09 Z) 1, n) 1 -1/3 -2/3 1/3
1/3 -1/3 -1/3
0 0 2

2 6.031 6.798 6.848 90.00 90.00 65.41 -45.62 127.64 1 0 0
0 0 -1
0 1 0

3 6.382 6.382 7.098 90.00 90.00 117.87 -45.56 127.77 1/2 1/2 0
-1/2 1/2 0

0 0 1
4 6.193 6.631 7.157 103.41 84.82 66.04 -45.32 127.79 Z) 1,n) 3 -1 0 1

0 -1 1
1 1 0

5 6.209 6.209 7.059 85.53 94.47 106.31 -44.21 129.96 1/2 1/2 0
-1/2 1/2 0

0 0 1
6 5.763 6.380 8.136 77.63 94.84 65.35 -43.93 130.22 -1 0 0

0 1 0
0 0 -1

3 1 5.588 8.493 8.614 95.47 103.30 104.27 -46.04 126.84 1 0 0
0 1 0
0 0 1

2 5.560 8.528 8.558 95.83 103.42 101.79 -45.86 127.20 1 0 0
0 1 0
0 0 1

3 6.730 6.730 8.850 86.38 86.38 106.95 -45.81 127.08 Z) 1, n) 1 1/3 2/3 2/3
1/3 -1/3 2/3
2/3 1/3 -5/3

4 6.880 7.034 8.552 73.57 81.12 75.45 -45.73 127.57 1 0 0
0 1 0
0 0 1

5 6.363 6.429 10.002 84.12 97.47 72.69 -45.65 127.65 Z) 1,n) 2 1/2 1/2 0
1/2 -1/2 1
0 -1 -2

6 6.889 7.000 8.497 75.30 81.73 76.07 -45.54 127.73 1 0 0
0 1 0
0 0 1

7 6.725 6.998 8.554 78.16 96.70 102.66 -45.34 127.79 Z) 1,n) 3 -1 -1 1
-1 1 0
-1 0 -1

4 1 6.369 7.526 11.451 109.18 86.29 101.35-45.81 127.08 Z) 1, n) 1 -1/3 -2/3 1/3
0 0 -2
1 0 1

2 6.429 7.537 11.307 79.83 88.47 108.09 -45.66 127.65 Z) 1,n) 2 -1/2 1/2 -1
0 0 2

1/2 3/2 1
3 6.358 7.536 11.655 71.14 94.83 105.09 -45.62 127.55 1 0 0

0 0 2
0 -1 1

4 7.157 8.577 8.820 103.64 96.46 76.72 -45.34 127.78 Z) 1,n) 3 1 1 0
2 0 -1

-1 1 -1
5 1 8.005 8.006 10.783 73.44 73.45 95.18 -45.93 126.96 1 0 0

0 1 0
0 0 1

2 6.796 8.516 11.325 85.73 78.70 82.39 -45.82 127.24 1 0 0
0 1 0
0 0 1
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The question of how to improve the potential is not a subject
of this paper, but it is apparent that the methods introduced here
can be used as a tool for testing and refining a potential.
Benzene crystallizes with four molecules in the unit cell of

an orthorhombic lattice.52,53 The parameters of the unit cell of
the experimental structure area) 7.357,b) 9.373,c) 6.701
Å. After energy minimization with the AMBER potential, these
values becamea ) 7.431,b ) 9.167,c ) 6.605 Å. The DEM
was applied with one, two, three, four, or eight molecules, using
the AMBER potential. The computations revealed the mini-
mized experimental structure with four or eight molecules (see
Table 3,Z ) 4, n ) 1 andZ ) 8, n ) 1). The lowest energies
obtained with one, two, or three molecules were higher than
those obtained with four or eight molecules.
The DSM was applied to benzene with the same numbers of

molecules. As with the DEM, the DSM found the minimized
experimental structure with four or eight molecules (see Table
5,Z) 4,n) 1 andZ) 8,n) 1); the lowest energies obtained
with one, two, or three molecules were higher. Consequently,
the value ofZ ) 4 and the structureZ ) 4, n ) 1 is chosen as
the predicted crystal structure. By contrast to the calculations
on hexasulfur, few higher-energy artifacts were found.
There is good agreement between the predicted and experi-

mental benzene crystal structures. The predicted unit cell is
orthorhombic withPbcasymmetry (see Table 7), and discrep-
ancies between the experimental and the predicted crystal-
structure lattice-vector lengths,a, b, andc, are 1.0%, 2.2%, and
1.4%, respectively (see Tables 3 and 5). The 87° angle between
the planes of the benzene molecules in the experimental crystal
structure15,52,53 (the so-called edge-to-face15 arrangement of
molecules) is predicted correctly. There is also good agreement

between our three lowest-energy structures for benzene (Z )
4, n) 1; Z) 2, n) 1; Z) 2, n) 2 of Tables 3, 5, and 7) and
the structures obtained by Gibson and Scheraga30 and by
Dzyabchenko.54,55

The minimized experimental crystal structure of hexasulfur
(Z ) 3) located by both methods, the DSM and the DEM, is
shown in Figure 1. The predicted crystal structure of benzene
is presented in Figure 2. Figure 3 shows the lowest-energy
structures for hexasulfur (Z ) 3) and benzene (Z ) 4),
corresponding to the most deformed potentials by the DSM (i.e.,
when the deformation parameterR is the largest).

7. Pressure Dependence for Benzene

All of the above computations were carried out with no
pressure term included in the total energy function. Since
benzene crystallizes differently when pressure is applied, we
reminimized several lowest-energy structures (listed in Table
5) with the pressure correction term of Busing and Matsui56

included, and the results are shown in Table 8. The reference
volume V0 was taken as 112.49 Å3/mol, the volume of the
minimized experimental lattice. The high-pressure structures
are geometrically close to their low-pressure counterparts, but,
depending on the applied pressure, the energetic order of the
minima changes (Figure 4). The results of the local minimiza-
tions at 25 kbar are shown in Table 8, together with the standard
equivalence matrix for the lowest-energy structure.

8. Space-Group Symmetry of Computed Structures

Tables 6 and 7 list the probable space-group symmetry of
the calculated structures of S6 and benzene, respectively,

TABLE 4 (Continued)

Z nb a (Å) b (Å) c (Å) R (deg) â (deg) γ (deg)
energy

(kcal/mol)

volume of
unit cell
(Å3/mol)

equivalence
indicatorc standard equivalence matrixd,e

3 6.739 8.848 11.440 69.92 83.02 86.51 -45.80 127.17 Z) 1, n) 1 1/3 2/3 2/3
-1/3 1/3 -5/3

-1 0 1
4 6.805 8.507 11.325 86.26 78.53 82.57 -45.76 127.31 1 0 0

0 1 0
0 0 1

6 1 5.588 10.865 12.660 88.88 89.49 82.00 -46.05 126.84 Z) 3,n) 1 1 0 0
1 1 1
0 -1 1

2 8.499 8.598 10.884 88.81 74.79 84.08 -45.94 127.15 1 0 0
0 1 0
0 0 1

3 8.498 8.573 10.917 74.34 87.33 84.91 -45.90 127.11 1 0 0
0 1 0
0 0 1

4 6.369 10.774 11.451 101.90 86.29 97.10 -45.82 127.08 Z) 1, n) 1 2/3 1/3 1/3
-1/3 1/3 7/3

0 -1 1
5 6.880 8.552 14.021 102.01 76.20 81.12 -45.74 127.56 Z) 3,n) 4 1 0 0

0 0 1
1 -2 0

6 6.429 11.135 11.307 108.71 91.53 87.70 -45.66 127.73 Z) 1,n) 2 -1/2 1/2 -1
1/2 1/2 -2

-1/2 -3/2 -1
7 6.377 11.223 11.288 71.88 87.84 86.81 -45.62 127.74 1/2 1/2 0

-1/2 1/2 -1
-1/2 3/2 0

aMinimized experimental structure found by the DSM is shown with bold italic font, in a different, but equivalent, representation from the one
usually used; see section 6 and also footnotesd ande. b The number of the successive lowest-energy local-minimum structure for givenZ. c Shows
equivalent unit cell with lowest possibleZ in the present table.d The lattice vectors in the current line can be expressed as linear combinations of
the lattice vectors of the probable lattice (shown in Table 6) with the elements of the standard equivalence matrix; i.e, the product of the lattice
vectors from Table 6 and the standard matrix produces a set of lattice vectors whose parameters are very close to those in the current line.eFor
an example of how to show the agreement between the lattice parameters of the equivalent structures, see Appendix A.
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deduced by methods described elsewhere.30 These have several
features of interest. First, although both molecules have 3h
symmetry, there is a marked scarcity of rhombohedral or trigonal
space groups in either table. Both molecules did pack inR3h
structures in the computations withZ ) 1; this corresponded
to the experimentally observed structure for S6 but not for
benzene. The only other rhombohedral structure was theR3
lattice obtained with benzene withZ ) 3, which had nine
molecules rather than three in the (trigonal) unit cell. There is
also a paucity of orthorhombic structures, namely, one each for
S6 and benzene (the latter corresponding to the experimentally
observedPbca low-pressure structure). By contrast, there is a
large number of triclinic lattices, especially for S6; the majority

of these hadP1h symmetry, although oneP1 structure was
obtained in each case. The remainder of the structures fall into
common classes of monoclinic primitive or centered space
groups.
Another point of interest concerns the two lowest-energy

packings of S6 and benzene when the unit cell contained one
molecule (Tables 4, 3, and 5, respectively). In both cases, the
molecules in the lowest-energy structure were arranged in layers
of hexagonal arrays with their mean planes parallel to theC
face, the molecules in adjacent layers being offset in a manner
consistent with rhombohedral centering. Also, in both cases,
the molecules in the next lowest-energy structure were arranged
in rows lying parallel to theb axis in theC face, with their

TABLE 5: Parameters of Calculated Structures for C6H6 Crystals Using the DSMa

Z nb a (Å) b (Å) c (Å) R (deg) â (deg) γ (deg)
energy

(kcal/mol)

volume of
unit cell
(Å3/mol)

equivalence
indicatorc standard equivalence matrixd,e

1 1 4.860 4.860 4.860 86.51 86.51 86.51 -11.91 114.21 2/3 1/3 1/3
-1/3 1/3 1/3
-1/3 -2/3 1/3

2 5.199 5.199 5.256 77.83 77.83 115.73 -11.73 117.49 1/2 1/2 0
1/2 -1/2 0
0 0 -1

2 1 5.511 6.264 6.751 90.00 90.00 73.12 -13.78 111.50 -1 0 0
-1 0 -1
0 -1 0

2 5.421 5.496 7.641 90.00 74.07 90.00 -13.51 109.47 1 0 0
0 -1 0
0 0 -1

3 5.435 6.489 7.790 66.06 90.00 114.74 -13.07 111.62 0 1 0
1/2 -1/2 0
0 0 -1

4 5.567 5.567 7.923 103.52 103.52 81.20 -12.89 115.17 -1/2 -1/2 0
-1/2 1/2 0

0 0 -1
5 5.487 6.374 7.163 90.00 90.00 64.52 -12.63 113.08 1 0 0

0 0 -1
0 1 0

3 1 5.412 9.190 9.190 63.76 101.32 78.68 -12.74 126.88 0 0 -1
-1/3 1/3 -1/3
1/3 2/3 1/3

2 5.355 6.283 10.674 81.69 89.74 71.98 -12.71 112.53 1 0 0
0 1 0
0 0 1

3 5.412 5.416 11.901 89.21 81.05 87.22 -12.67 114.72 1 0 0
0 1 0
0 0 1

4 1 6.605 7.431 9.167 90.00 90.00 90.00 -13.88 112.49 0 0 1
1 0 0
0 1 0

2 6.752 7.039 9.469 97.65 90.00 90.00 -13.79 111.50 Z) 2,n) 1 0 -1 0
0 0 -1
2 0 1

3 7.719 7.719 8.065 73.18 106.82 89.21 -13.51 109.47 Z) 2,n) 2 -1 -1 0
1 -1 0
1 0 1

8 1 6.605 9.168 14.861 90.00 90.00 90.00 -13.88 112.48 Z) 4, n) 1 0 0 1
0 1 0

-2 0 0
2 7.039 9.470 13.502 90.00 90.00 97.65 -13.79 111.50 Z) 2,n) 1 0 0 -1

2 0 1
0 -2 0

3 6.586 7.310 18.705 86.49 90.00 90.00 -13.73 112.37 0 1 0
1 0 0
0 0 -1

aMinimized experimental structure found by the DSM is shown with bold italic font, in a different, but equivalent, representation from the one
usually used; see section 6 and also footnotesd ande. b The number of the successive lowest-energy local-minimum structure for givenZ. c Shows
equivalent unit cell with lowest possibleZ in the present table.d The lattice vectors in the current line can be expressed as linear combinations of
the lattice vectors of the probable lattice (shown in Table 7) with the elements of the standard equivalence matrix; i.e, the product of the lattice
vectors from Table 7 and the standard matrix produces a set of lattice vectors whose parameters are very close to those in the current line.eFor
an example of how to show the agreement between the lattice parameters of the equivalent structures, see Appendix A.
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mean planes perpendicular to theC face and with adjacent rows
offset in a manner consistent withC-face centering.
Perhaps the greatest interest attaches to the triclinicP1h

packings of S6 and benzene. All but two of theP1h structures
of S6, together with the singleP1h packing of benzene, involve
packings that are physically rather improbable, since their
asymmetric units contain one or more half-molecules plus one
or more whole molecules. Each half-molecule is related by
inversion through the origin to the other half of either the same
molecule or one of its translational images, and each whole
molecule is related by inversion in a similar way to another
whole molecule. The whole molecules and half-molecules in
these packings are crystallographically unrelated. Regarded as
regular packings of disjoint points in space, such arrangements
of atoms are perfectly legitimate; however, it is difficult to see
how a real crystal could be nucleated and built up from identical
molecules whose environments differ so significantly. These
packings are geometrically reasonable but physically unreason-
able. This argument does not apply to theP1h structure of S6
that was obtained whenZ ) 1, because in that packing all
molecules would experience the same environment. Another

implausible packing, for much the same reason, is theC2/m
structure of S6 obtained by the DSM with six molecules
(Table 4,Z) 6, n) 7). As noted in footnotef of Table 6, this
structure can be generated by merging alternate layers of aC2/m
structure with four molecules in the unit cell and1/2 molecule
in the asymmetric unit, and anotherC2/m structure with two
molecules in the unit cell and1/4 molecule in the asymmetric
unit. Again, it is very difficult to see how such a structure would
be nucleated. Structures such as the ones discussed here must
be regarded as artifacts of the computational method, which
relies entirely on energy minimization and takes no account of
the process by which the crystal is formed. TherelatiVeenergies
of the physically plausible and implausible structures could
presumably be changed by adjusting the parameters of the
potential, but this may not eliminate the implausible structures;
therefore, the existence of such artifactual structures should
probably be accepted as due to the incompleteness of the
thermodynamic function. In the calculations with S6, two
artifactual packings (for each of three, five, and six molecules,
respectively, in the unit cell) were found that had lower energies
than the experimentally observed packing; however, the ex-

TABLE 6: Probable Space-Group Symmetry of the Calculated S6 Structures

equivalent structures Za Nb a (Å) b (Å) c (Å) R (deg) â (deg) γ (deg) space group

Tab.4Z) 1,n) 1; Tab.4Z) 2,n) 1

3 1/6 10.816 10.816 3.765 90.00 90.00 120.00 R3hTab.4Z) 3,n) 3; Tab.2Z) 3,n) 3
Tab.4Z) 4,n) 1; Tab.4Z) 5,n) 3
Tab.4Z) 6,n) 4; Tab.2Z) 6,n) 4

Tab.4Z) 1,n) 2; Tab.4Z) 3,n) 5 2 1/4 10.892 6.578 3.769 90.00 108.98 90.00 C2/mTab.4Z) 4,n) 2; Tab.4Z) 6,n) 6

Tab.4Z) 1,n) 3; Tab.4Z) 2,n) 4
Tab.4Z) 3,n) 7; Tab.2Z) 3,n) 7 1 1/2 4.189 5.705 6.182 67.67 70.36 88.65 P1h
Tab.4Z) 4,n) 4

Tab.4Z) 1,n) 4 2 1/4 7.458 6.630 5.603 90.00 111.11 90.00 C2/m

Tab.4Z) 2,n) 2 2 1/2 6.031 6.848 6.798 90.00 114.59 90.00 P21/c

Tab.4Z) 2,n) 3 4 1/2 10.934 6.586 7.098 90.00 90.00 90.00 Cmc21

Tab.4Z) 2,n) 5 4 1/2 9.938 7.446 7.059 90.00 95.59 90.00 C2/c

Tab.4Z) 3,n) 1; Tab.2Z) 3,n) 1 3 1 and 1/2 5.588 8.493 8.614 95.47 103.30 104.27 P1hTab.4Z) 6,n) 1; Tab.2Z) 6,n) 1

Tab.4Z) 3,n) 2; Tab.2Z) 3,n) 2 3 1 and 1/2 5.560 8.528 8.558 95.83 103.42 101.79 P1h

Tab.4Z) 3,n) 4; Tab.2Z) 3,n) 4 3 1 and 1/2 6.880 7.034 8.552 73.57 81.12 75.45 P1hTab.4Z) 6,n) 5

Tab.2Z) 3,n) 6 3 1 and 1/2 5.518 8.413 8.511 82.91 99.12 83.63 P1h

Tab.4Z) 3,n) 6; Tab.2Z) 3,n) 5 3 1 and 1/2 6.889 7.000 8.497 75.30 81.73 76.07 P1hTab.2Z) 6,n) 6

Tab.4Z) 4,n) 3 2 1/2 6.358 11.030 3.768 90.00 105.09 90.00 P21/n

Tab.4Z) 5,n) 1c 5 2 and 1/2 8.005 8.006 10.783 73.44 73.45 95.18 P1h

Tab.4Z) 5,n) 2 5 2 and 1/2 6.796 8.516 11.325 85.73 78.70 82.39 P1h

Tab.4Z) 5,n) 4 5 5 6.805 8.507 11.325 86.26 78.53 82.57 P1

Tab.4Z) 6,n) 2; Tab.2Z) 6,n) 2 6 2 and 2(1/2)d 8.499 8.598 10.884 88.81 74.79 84.08 P1h

Tab.4Z) 6,n) 3; Tab.2Z) 6,n) 3 6 3 8.498 8.573 10.917 74.34 87.33 84.91 P1h

Tab.4Z) 6,n) 7e 3 1/2 and 1/4f 10.922 6.586 11.454 90.00 111.53 90.00 C2/m

Tab.2Z) 6,n) 5g 2 2(1/4) 10.935 6.591 8.938 90.00 127.50 90.00 C2/m

Tab.4Z) 2,n) 6 2 2 5.763 6.380 8.136 102.38 94.84 114.65 P1

aNumber of molecules in the probable unit cell.bNumber of molecules in the probable asymmetric unit.cNormals to the mean planes of all
molecules lie in planes parallel to the (1, 1, 0) plane and make an angle of 34.8° with the c axis; centers of three molecules lie on a line from
(0, 0, 0) to (1, 1, 1), and centers of the remaining two lie on parallel line through (1/2, 1/2, 1/2); all molecules are related by inversion but not by
crystallographic rotation or reflection.d Asymmetric unit consists of two whole molecules and two unrelated half-molecules.e Lattice consists of
layers of aC2/m lattice with four molecules in the unit cell and1/2 molecule in the asymmetric unit, alternating with layers of aC2/m lattice with
two molecules in the unit cell and1/4 molecule in the asymmetric unit; inversion points of these two lattices are at (0, 0, 0) and (0, 1/2, 1/2),
respectivley.f Asymmetric unit consists of unrelated half-molecule and 1/4 molecule.g Lattice consists of alternating layers of two unrelatedC2/m
lattices with two molecules in the unit cell and1/4 molecule in the asymmetric unit, and inversion points at (0, 0, 0) and (0, 1/2, 1/2), respectively.
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perimentally observed crystal structure is still among the lowest-
energy ones computed.

9. Conclusions

We have presented two methods for global minimization, both
based on the idea of using a smoothing transformation of the
original potential surface, and recovering the deepest minima
of the original energy function by a reversing procedure when
the transformation is gradually removed. Both methods proved
to be extremely powerful, not only in solving problems that
are considered very difficult1,2 but also in solving the even more

difficult problem that arises when the number of molecules in
the unit cell, and consequently the number of variables, is
doubled.
To demonstrate the high performance of the DEM and the

DSM, 500 randomly started local minimizations were carried
out for S6 with six molecules and for C6H6 with eight molecules
without using any deformation of the potential function. None
of them reached a structure with energy close to the global-
minimum structure, despite an enormous computational expense,
considerably greater than the computational costs of the DEM
and the DSM runs.
The excellent performance is due not only to the smoothing

transformations but also to the essential use of several trajec-
tories coupled with a mechanism (described in section 2) that
determines whether to maintain or to discard a structure at a
given transformation level.
The results show that the AMBER potential which was used

to simulate the interactions between benzene molecules leads
to the experimentally observed crystal structures at low and high
pressures. The minimized experimental crystal structures of
benzene are the global-minima structures of the potential for
all pressures considered here. However, the potential that was

TABLE 7: Probable Space-Group Symmetry of the Calculated Benzene Structures

equivalent structures Za Nb a (Å) b (Å) c (Å) R (deg) â (deg) γ (deg) space group

Tab.3Z) 1,n) 1; Tab.5Z) 1,n) 1 3 1/6 6.661 6.661 8.916 90.00 90.00 120.00 R3h

Tab.3Z) 1,n) 2; Tab.5Z) 1,n) 2 2 1/4 5.530 8.804 5.255 90.00 113.35 90.00 C2/m

Tab.3Z) 2,n) 1; Tab.5Z) 2,n) 1
Tab.3Z) 4,n) 2; Tab.5Z) 4,n) 2 2 1/2 5.511 6.751 7.040 90.00 121.63 90.00 P21/c
Tab.3Z) 8,n) 2; Tab.5Z) 8,n) 2

Tab.3Z) 2,n) 2; Tab.5Z) 2,n) 2 2 1/2 5.421 5.497 7.641 90.00 105.93 90.00 P21/cTab.3Z) 4,n) 3; Tab.5Z) 4,n) 3

Tab.5Z) 2,n) 3 4 1/2 11.788 5.435 7.791 90.00 116.55 90.00 C2/c

Tab.5Z) 2,n) 4 4 2(1/2)c 8.453 7.246 7.923 90.00 107.94 90.00 Cm

Tab.3Z) 2,n) 3; Tab.5Z) 2,n) 5 2 1/2 5.487 7.163 6.374 90.00 115.48 90.00 P21/m

Tab.3Z) 3,n) 1; Tab.5Z) 3,n) 1 9 1 15.608 15.608 5.412 90.00 90.00 120.00 R3

Tab.3Z) 3,n) 2; Tab.5Z) 3,n) 2 3 1 and 1/2 5.355 6.283 10.674 81.69 89.74 71.98 P1h

Tab.3Z) 3,n) 3; Tab.5Z) 3,n) 3 3 3 5.412 5.416 11.901 89.21 81.05 87.22 P1

Tab.3Z) 4,n) 1; Tab.5Z) 4,n) 1 4 1/2 7.431 9.167 6.605 90.00 90.00 90.00 PbcaTab.3Z) 8,n) 1; Tab.5Z) 8,n) 1

Tab.5Z) 8,n) 3 8 4 18.705 6.586 7.310 90.00 93.51 90.00 Pc

aNumber of molecules in the probable unit cell.bNumber of molecules in the probable asymmetric unit.c Asymmetric unit consists of two
unrelated half-molecules.

Figure 1. Minimized experimental structure for hexasulfur found by
the DEM and the DSM (a ) b ) 10.816 Å,c ) 3.764 Å,R ) â )
90°, γ ) 120°).

Figure 2. (a, top) Predicted crystal structure of benzene found by the
DEM and the DSM (Z ) 4, n ) 1 from Table 5;a ) 6.605 Å,b )
7.431 Å,c ) 9.167 Å,R ) â ) γ ) 90.00°). (b, bottom) Details of
edge-to-face arrangement of benzene molecules.

Figure 3. Lowest-energy structures corresponding to the most
deformed potentials using the DSM for (a, top) hexasulfur (Z ) 3; a
) 5.407 Å,b ) 8.113 Å,c ) 8.241 Å,R ) 93.78°, â ) 75.72°, γ )
76.06°) and (b, bottom) benzene (Z ) 4; a ) b ) 7.317 Å, c )
7.363 Å,R ) â ) 101.50°, γ ) 90.30°).
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used for S6 molecules is not accurate enough to allow the proper
prediction, unless a number of lower-energy artifacts that could
probably not be observed are discarded on physical grounds.
Both methods can be applied to crystals consisting of any

rigid molecule with a dipole moment equal to zero. A molecule
with a nonzero dipole moment may lead to a unit cell with a
nonzero dipole moment; however, the very definition of the
energy of a polar crystal is still unclear.19,20,23 Consequently,
the definition of the energy of a crystal consisting of flexible,
charged molecules is still under investigation. We are currently
using the DEM and the DSM to try to treat crystals of flexible
molecules with dipole moments. Attempts are also being made
to reduce the CPU time required by our algorithms (see section
10).
Since both methods have also been applied with considerable

success in other global-optimization problems, unrelated to
crystal structure prediction,37-40,42 they seem to be well-suited
to a broad spectrum of very different applications in physical
chemistry.
A great advantage of the DSM is the very simple way in

which it is applied, compared to the DEM. Instead of
complicated formulas for convolutions, spline techniques, etc.,
we use a simple algebraic formula (eq 2). At the same time,
the behavior of the DSM is practically the same as that of the
DEM. This simplicity allows for immediate and straightforward
application of the DSM to individual flexible molecules and to
crystals of flexible molecules.

10. Computations

The computations were carried out in parallel on an IBM
SP2 cluster containing 512 nodes (at the Cornell University

Theory Center). The programs were parallelized on the fine
grain level by using the IBM Message-Passing Interface,
distributing the pairwise interactions in the function and gradient
computations among the processors; 30-50 processors were
usually used. The overhead in the parallel computations did
not exceed 20% for these numbers of processors.
An average CPU time for one randomly started local

minimization with the original (untransformed) potential was
3418 CPU seconds for six S6 molecules and about 7 CPU hours
for eight benzene molecules (all timings are reported as if the
computations were carried out on one processor); these averages
are calculated from the test of 500 randomly started local
minimizations, which did not reveal any structures energetically
close to the global minimum. The runs with the DEM or the
DSM consumed a CPU time equivalent to about 100 randomly
started local minimizations (with the undeformed potential) for
both hexasulfur and benzene molecules. A single local mini-
mization with the deformed potential costs up to 20 times less
than that with the original potential because the shape of the
deformed surface is simpler, and the minimization procedure
needs fewer iteration steps.

Appendix A

As an example, we show how the parameters (a, b, c, R, â,
γ) of the calculated unit cell of the S6 crystal structureZ ) 3,
n)3 of Table 4 agree with the lattice parameters of the
minimized experimental structure (a lattice with three molecules
in a trigonal unit cell; the first structure in Table 6). The
Cartesian coordinates (a1, a2, a3, b1, b2, b3, c1, c2, c3,) of the
lattice vectors can be calculated by using the following
formulas: a1 ) a, a2 ) a3 ) 0; b1 ) b‚cosγ, b2 ) b‚sin γ, b3
) 0; c1 ) c‚cosâ, c2 ) (b‚c‚cosR - b1‚c1)/b2, c3 ) (c2 -
c1
2 - c2

2)1/2. For the trigonal lattice,a ) b ) 10.816 Å,c )
3.765 Å,R ) â ) 90°, γ ) 120°, and the Cartesian coordinates
becomea1 ) 10.816,a2 ) a3 ) 0.0000;b1 ) -5.4080,b2 )
9.3669,b3 ) 0.0000;c1 ) 0.0000,c2 ) 0.0000,c3 ) 3.7650.
Multiplying the matrix of these Cartesian coordinates by the
standard equivalence matrix from Table 4, a set of Cartesian
coordinates is obtained, which should be a representation of
the lattice vectors of the structureZ ) 3, n ) 3:

Indeed, the lengths of the resulting vectorsa, b, c calculated
from these Cartesian coordinates are 6.7302, 6.7302, and 8.8527,

TABLE 8: Parameters of Locally Minimized Structures of C6H6 Crystals at 25 kbara

Z nb a (Å) b (Å) c (Å) R (deg) â (deg) γ (deg) energy (kcal/mol) volume of unit cell (Å3/mol) standard equivalence matrixc,d

4 3 7.501 7.501 7.766 72.00 108.00 89.00 -17.06 98.05 1 -1 0
-1 -1 0
-1 0 -1

2 6.091 8.366 8.366 79.00 100.71 79.29 -16.60 100.05
1 6.214 7.247 8.971 90.00 90.00 90.00 -16.36 101.00

aMinimized experimental structure found by the DSM is shown with bold italic font, in a different, but equivalent, representation from the one
usually used; see section 6 and also footnotesc andd. b The structures in this table are listed as succesive lowest-energy local-minimum structures
(at 25 kbar); the numbern indicates the structure from Table 5 being minimized locally at 25 kbar.c The lattice vectors in the current line can be
expressed as linear combinations of the lattice vectors of the minimized experimental structure for benzene at 25 kbar (Z ) 2, a ) 5.258 Å,b )
5.350 Å,c) 7.209 Å,R ) 90.00°, â ) 104.74°, γ ) 90.00°), with the coefficients of the standard equivalence matrix; the minimized experimental
structure for benzene at 25 kbar reported in ref 14, where different potential parameters were used, agrees closely with the above (Z ) 2, a )
5.424 Å,b ) 5.521 Å,c ) 7.432 Å,R ) 90.00°, â ) 105.90°, γ ) 90.00°). d For an example of how to show the agreement between the lattice
parameters of the equivalent structures, see Appendix A.

Figure 4. Results for energy minimizations of crystals of benzene at
various pressures forZ ) 4 andn ) 1, 2, and 3, respectively.

[1/3 2/3 2/3
1/3 -1/3 2/3
2/3 1/3 -5/3]‚[ 10.8160 0.0000 0.0000

-5.4080 9.3669 0.0000
0.0000 0.0000 3.7650] )

[0.0000 6.2446 2.5100
5.4080 -3.1223 2.5100
5.4080 3.1223-6.2750]
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respectively, and agree with the lengths in Table 4 (Z ) 3, n)
3). Similarly, the anglesR, â, γ are: 86.38°, 86.38°, and
106.95° and agree with the angles in Table 4.
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